



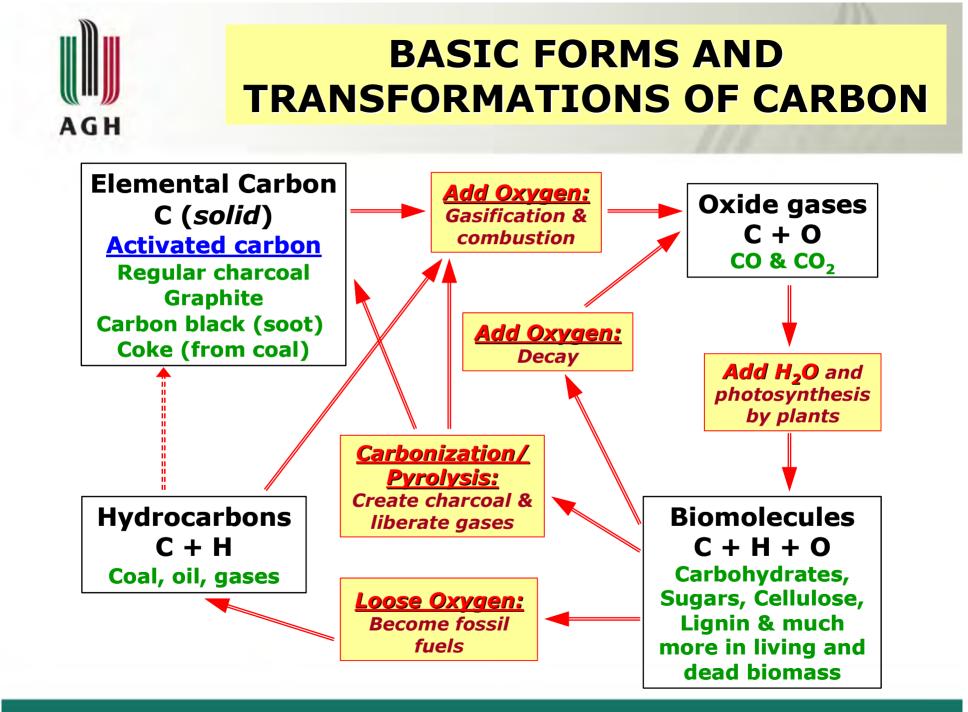
ARBEITSKREIS KOHLENSTOFF DER DEUTSCHEN KERAMISCHEN GESELLSCHAFT E.V.





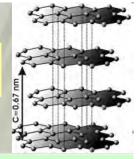
2nd German-Polish Symposium "Carbon Materials for Metal Production – Tradition and Progress"

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY


# Highly Porous Carbon Adsorbents from Coal Tar Pitch and Waste Polymers

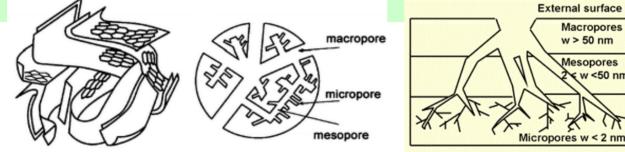
<u>Leszek Czepirski</u><sup>1</sup>, Jakub Szczurowski<sup>1</sup>, Mieczysław Bałys<sup>1</sup>, Wiesława Ciesińska<sup>2</sup>, Grzegorz Makomaski<sup>2</sup>, Janusz Zieliński<sup>2</sup>

<sup>1)</sup> AGH-UST, Faculty of Energy and Fuels <sup>2)</sup> Warsaw University of Technology, Institute of Chemistry in Płock

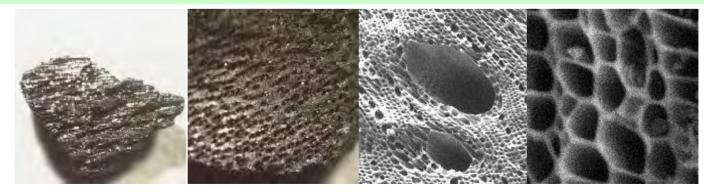

Work supported by the National Science Centre (NCN) - project No. N N209763640

Freiberg, October 16, 2013



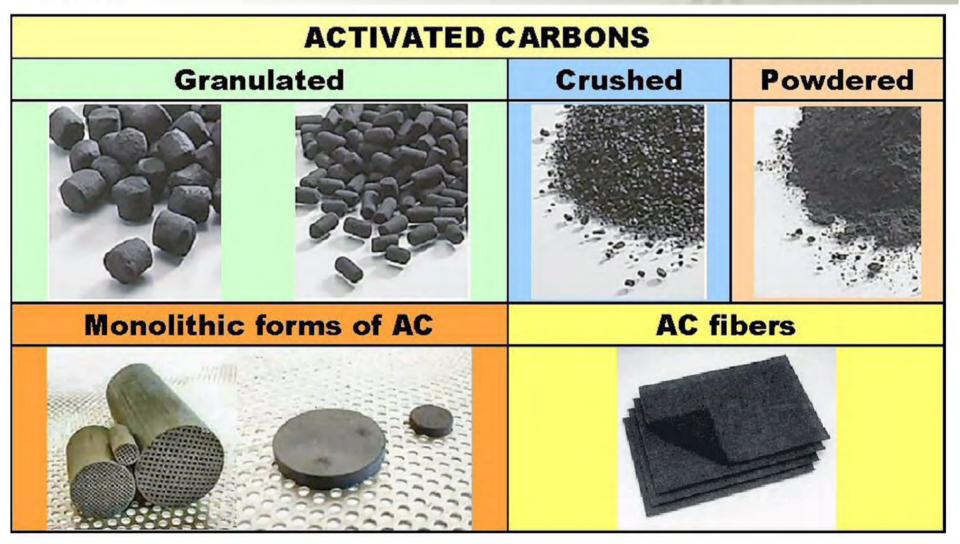



## What is Activated Carbon?



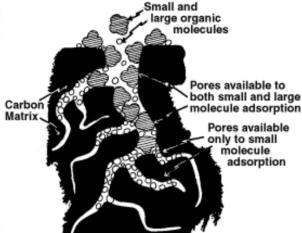

Highly porous, amorphous solid consisting of micro crystallites with a graphite lattice. It differs from graphite by having a random imperfect structure which is highly porous over a broad range of

pore sizes.

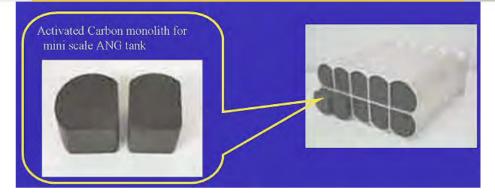



Activated carbons have unique porous structures, large specific surface area and porosity, and various surface functional groups

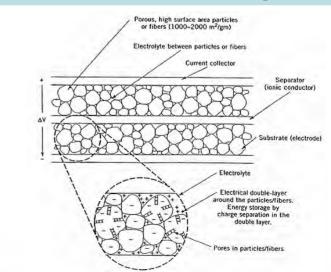



Zoomed images of Carbon Surface and Pores (zoom increases left to right)









# **Activated Carbon Applications**



#### Natural gas, hydrogen storage



#### Electrochemical applications (electrodes for fuel cells, supercapacitors)



Water treatment

- Air treatment
- Gas purification
- Gold purification
- Metal extraction
- Medicine
- Sewage treatment
- Gas masks
- Filter masks



## Main Processes in the Production of Activated Carbon

#### **SELECTION OF RAW MATERIALS**

The choice of raw material has a large influence on the characteristics and performance of the AC, each producing an AC with differing surface areas, total pore volume, pore radius and pore volume distribution.

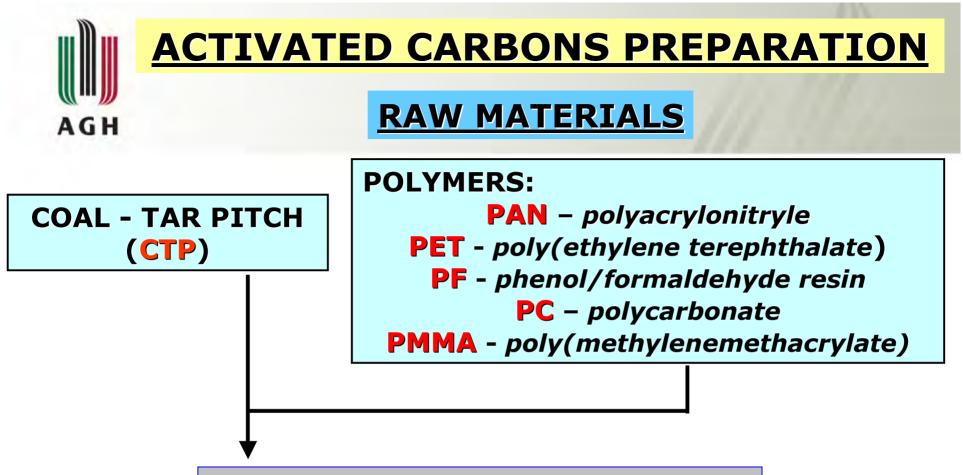
#### We should consider the following requirements:

- Required properties of the final product
- 💠 Cost
- Availability
- Consistency of quality
- Purity

Production of activated carbons comes from different carbonaceous materials like coal, wood, coconut shells, etc.



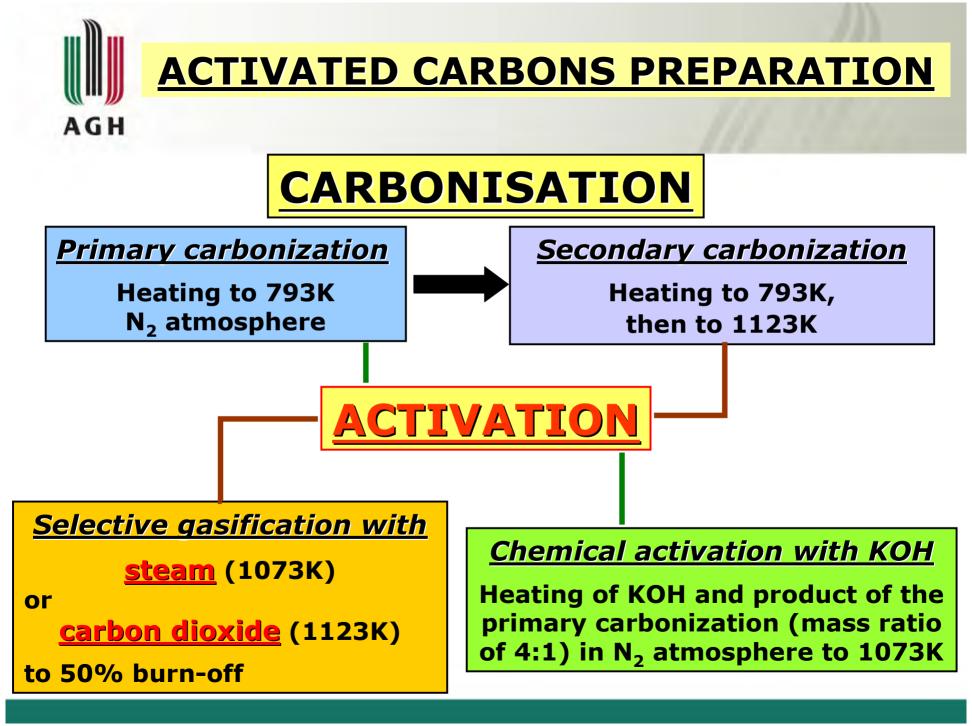
### Main Processes in the Production of Activated Carbon


#### **CARBONISATION**

The raw materials are first <u>carbonized</u> via a controlled heating process at "*low*" temperature (200-300°C) in an oxygen-lean environment which keeps the material from burning. This process converts the raw material into a disordered carbon structure full of tiny pores.

#### **ACTIVATION**

The carbonized materials are then <u>activated</u> by steam (or chemical treatment). Steam activation is carried out at high temperature (700 - 1100°C) and the carbonized materials react with the steam to form carbon monoxide and hydrogen which exit as gases leaving behind a highly porous activated carbon material.

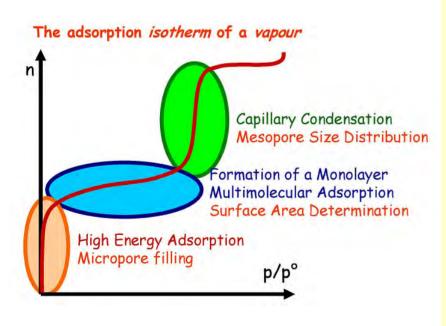

A porous structure is formed inside the carbonisates due to the partial gasification of the elemental carbon.



#### **HOMOGENIZATION OF COMPOSITES**

Compositions with different pitch/polymer ratios were prepared in the conditions allowing to obtain homogeneous and stable mixtures.

Depending on the polymer type, the components were homogenized in the temperature 423-523K, during 0.5-2.5 h.






The textural properties of the activated carbons were determined using physical adsorption of gases (N<sub>2</sub> at 77K and CO<sub>2</sub> at 273K) using a Quantachrome Autosorb 1C analyzer

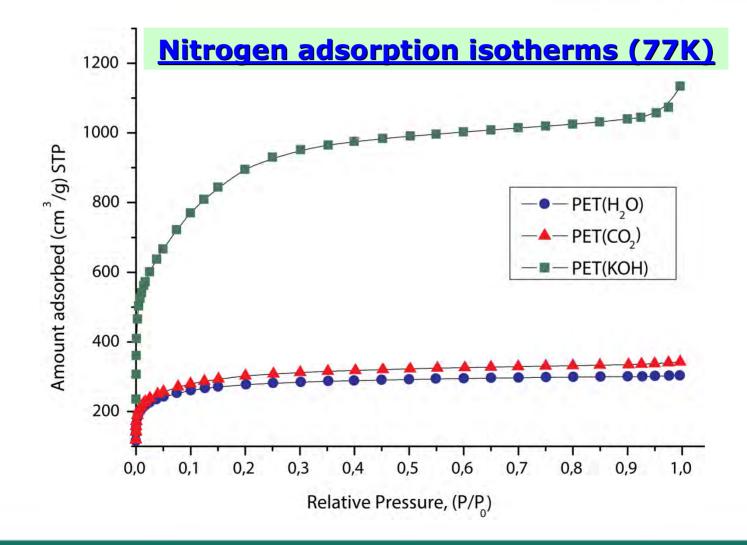


#### **INTERPRETATION OF EXPERIMENTAL DATA**



- NIST 2006, Porosity and Specific Surface Area Measurements for Solid Materials.

- ISO 9277: 2010, Determination of the specific surface area of solids by gas adsorption - BET method.


- ISO 15901-1: 2005, Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption — Part 1: Mercury porosimetry.

- ISO 15901-2: 2006, Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption — Part 2: Analysis of mesopores and macropores by gas adsorption.

ISO 15901-3: 2007, Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption — Part 3: Analysis of micropores by gas adsorption.

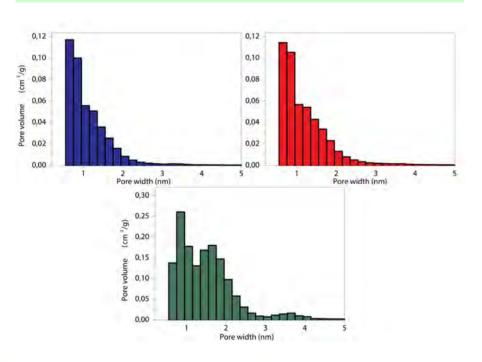


#### Influence of activating agent on porous texture of activated carbons composites 50% CTP + 50% PET



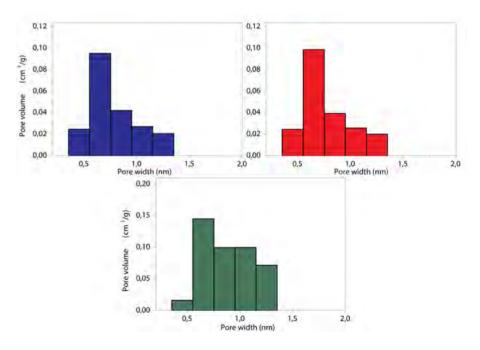


#### Influence of activating agent on porous texture of activated carbons composites 50% CTP + 50% PET


#### **Porous texture of activated carbons from PET**

| Activating agent                                                   | H <sub>2</sub> O | CO <sub>2</sub> | КОН   |  |  |  |  |  |
|--------------------------------------------------------------------|------------------|-----------------|-------|--|--|--|--|--|
| N <sub>2</sub> ad-/desorption isotherm (77K)                       |                  |                 |       |  |  |  |  |  |
| BET surface area, m <sup>2</sup> /g                                | 1042             | 1122            | 3265  |  |  |  |  |  |
| Dubinin-Radushkevich volume of micropores, cm <sup>3</sup> /g      | 0.385            | 0.403           | 1.060 |  |  |  |  |  |
| Dubinin-Radushkevich surface area of micropores, m <sup>2</sup> /g | 1080             | 1145            | 2983  |  |  |  |  |  |
| DFT volume of pores: 0.35÷2 nm, cm <sup>3</sup> /g                 | 0.319            | 0.441           | 1.282 |  |  |  |  |  |
| DFT surface area of pores: 0.35+2 nm, m <sup>2</sup> /g            | 816              | 1028            | 2424  |  |  |  |  |  |
| DFT volume of pores: 2÷40 nm, cm <sup>3</sup> /g                   | 0.112            | 0.044           | 0,275 |  |  |  |  |  |
| DFT surface area of pores: 2÷40 nm, m <sup>2</sup> /g              | 185              | 26              | 167   |  |  |  |  |  |
| CO <sub>2</sub> adsorption isotherm (273K)                         |                  |                 |       |  |  |  |  |  |
| DFT volume of pores: 0.35+1.5 nm, cm <sup>3</sup> /g               | 0.230            | 0.229           | 0.503 |  |  |  |  |  |
| DFT surface area of pores: 0.35+1.5 nm, m <sup>2</sup> /g          | 709              | 710             | 1287  |  |  |  |  |  |




#### Influence of activating agent on porous texture of activated carbons composites 50% CTP + 50% PET

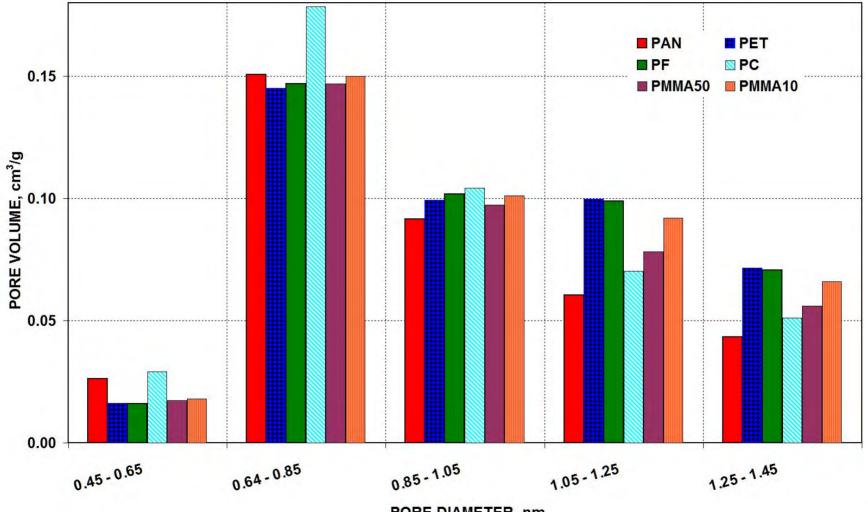
#### **Pore size distribution for activated carbons from PET**



N<sub>2</sub> adsorption isotherms (77K)

#### CO<sub>2</sub> adsorption isotherms (273K)




# AGH

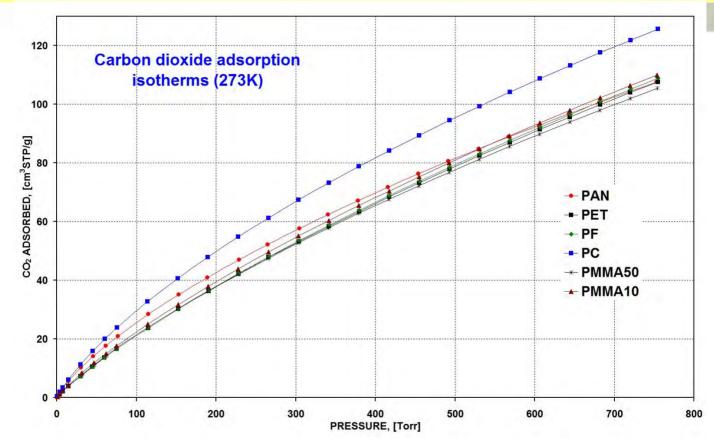
#### **Influence of precursor polymers on porous texture of composites activated with KOH**

| Precursor polymer                                           | PAN         | PET     | PF    | PC    | PMMA50 | PMMA10 |  |  |
|-------------------------------------------------------------|-------------|---------|-------|-------|--------|--------|--|--|
| N 2 ad-/desorption isotherm, 77K                            |             |         |       |       |        |        |  |  |
| BET Surface Area, [m²/g]                                    | 2225        | 3265    | 3345  | 2330  | 3134   | 2917   |  |  |
| Total Pore Volume, [cm³/g]                                  | 1.198       | 1.635   | 1.747 | 1.021 | 1.539  | 1.439  |  |  |
| Volume of micropores, [cm³/g]                               | 0.813       | 1.06    | 1.062 | 0.824 | 1.017  | 0.949  |  |  |
| Surface area of micropores, [m²/g]                          | 2283        | 2983    | 2989  | 2313  | 2875   | 2670   |  |  |
| Volume of mesopores, [cm <sup>3</sup> /g]                   | 0.179       | 0.328   | 0.258 | 0.063 | 0.162  | 0.127  |  |  |
| Surface area of mesopores, [m <sup>2</sup> /g]              | 143         | 167     | 214   | 40    | 102    | 80     |  |  |
| Average radius of mesopores, [nm]                           | 1.7         | 2.2     | 1.5   | 1.7   | 1.7    | 1.7    |  |  |
| DFT Volume of pores (0,35-40 nm), [cm <sup>3</sup> /g]      | 1.113       | 1.557   | 1.633 | 0.939 | 1.43   | 1.334  |  |  |
| DFT Surface area of pores (0,35-40 nm), [m²/g]              | 2009        | 2591    | 2598  | 2076  | 2488   | 2312   |  |  |
| CO 2 adsorpt                                                | ion isother | m, 273K |       |       |        |        |  |  |
| DFT Volume of pores (0,35-40 nm), [cm <sup>3</sup> /g]      | 0.417       | 0.503   | 0.506 | 0.486 | 0.453  | 0.493  |  |  |
| DFT Surface area of pores (0,35-40 nm), [m <sup>2</sup> /g] | 1174        | 1287    | 1296  | 1370  | 1201   | 1287   |  |  |
| Monte-Carlo pore volume, [cm³/g]                            | 0.482       | 0.518   | 0.541 | 0.542 | 0.486  | 0.526  |  |  |
| Monte-Carlo surface area, [m²/g]                            | 1229        | 1265    | 1304  | 1400  | 1212   | 1292   |  |  |

#### PSD of activated carbons from coal-tar pitch and polymer composites activated with KOH

AGH




PORE DIAMETER, nm



# Acid-base properties of AC's (Boehm titration method)

| Polymor       | Activating Activity A |            |          |          |         | Basic groups |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|----------|---------|--------------|--|
| Polymer agent | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Carboxylic | Lactonic | Phenolic | [meq/g] |              |  |
| PET           | CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.58       | 0.38     | 0.10     | 0.10    | 0.35         |  |
| PET           | H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.55       | 0.42     | 0.05     | 0.08    | 0.44         |  |
| PET           | кон                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.56       | 0.18     | 0.10     | 0.28    | 1.49         |  |
| PET           | K <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.44       | 0.13     | 0.08     | 0.23    | 0.94         |  |
| PET           | MgCO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.33       | 0.05     | 0.09     | 0.19    | 1.45         |  |
| РММА          | CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.43       | 0.21     | 0.10     | 0.12    | 0.39         |  |
| РММА          | H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.50       | 0.10     | 0.32     | 0.18    | 0.65         |  |
| РММА          | КОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.66       | 0.13     | 0.16     | 0.37    | 0.99         |  |
| PF            | CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.67       | 0.25     | 0.21     | 0.21    | 0.35         |  |
| PF            | H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.27       | 0.35     | 0.25     | 0.67    | 0.73         |  |
| PC            | CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.40       | 0.07     | 0.13     | 0.20    | 0.85         |  |
| PC            | H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.34       | 0.09     | 0.07     | 0.18    | 1.02         |  |
| PC            | КОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.32       | 0.17     | 0.15     | 1.00    | 0.98         |  |
| PAN           | CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.23       | 0.05     | 0.04     | 0.14    | 0.62         |  |
| PAN           | H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.30       | 0.46     | 0.35     | 0.49    | 1.10         |  |
| PAN           | КОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.05       | 0.32     | 0.40     | 0.33    | 0.98         |  |

#### CO<sub>2</sub> adsorption isotherms on activated carbons from coal-tar pitch and polymer composites activated with KOH



AGH

The samples seems to be a suitable adsorbent for carbon dioxide because its adsorption properties are dependent on its pore texture and chemical surface characteristics determined by the amount and type of heteroatoms existed in the acid, basic, or neutral form of organic functional groups.



# CONCLUSIONS

Activated carbons of coal-tar pitch and polymer waste origin can be converted to highly porous products with essentially high micropore volume and relatively small volume of mesopores.

□ In spite of the high carbon content of the precursors, the porous structure developed during the preparation is strongly influenced by the original matrix structure of the polymers, as well as greatly depends on the carbonization and activation conditions.

A good combination of activating agent, ratio of activating agent/precursor and carbonisation/activation temperature allows the production of activated carbons with specific chemical and structural characteristics, which are properties very important for identifying an application.

□ Waste polymers are promising activated carbon precursors for two reasons. First, they contain a high percentage of carbon and second, they are readily available in a relatively pure state from waste recovery.



# Thank you for your attention