

From coking coal to coke - perspectives for met coke production in European Union

Aleksander Sobolewski, Bartosz Mertas

Institute for Chemical Processing of Coal, Zabrze, Poland

Contents

Introduction

Coal&coke market – EU over world

EU environmental protection provisions

Technology for coke quality improvement

Conclusions

Introduction

Steel \Rightarrow still main construction material in XXI century

Blast-furnace \Rightarrow still main production technology

Coke \Rightarrow still indispensable charge material

- Coal \Rightarrow good quality coal still indispensable for production of good quality coke
- Technology \Rightarrow there is still place for further improvement of coke quality

Location of the world's main fossil fuel reserves (billion tonnes of oil equivalent)

Source: BP Statistical Review of World Energy 2011

Europe's hard coal and lignite production and imports in 2012

Source: EURACOAL Annual Report 2012

Hard coal production in EU27

Source: http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Coal_consumption_statistics

Coke consumption in years 2009-2013 [mln ton]

Source: Polski Koks S.A. – presentation during conference Koksownictwo 2013

Coke production in EU

Environmental EU policy

Where UE goes?

> Own raw materials

- > Import of raw material (coal, ore)
- Import of semi-products (coke, concentrate)
- Import of raw products

Import of highly processed market ready products??

BAT (Best Available Technology)

New coke production capacities

Lp.	Country	Location	Production capacity [t.t /rok]	Height [m]	Туре	Date of modernisation / construction	Type of modernisation /construction	
1	Russia	Czerepowiec	700	5,50	gravity	2013	foundations	
2	Germany	НКМ	1150	7,85	gravity	2013	ground	>
3	India	SAIL (Burnpur)	881	7,00	gravity	2013	ground	
4	Indonesia	Krakatau Posco (Citegon)	1110	7,60	gravity	2013	ground	
5	India	SAIL (Bhilai)	881	7,00	gravity	2014	foundations	
6	India	SAIL (Rourkela)	420	4,50	gravity	2014	foundations	
7	India	Bokaro	500	7,00	gravity	2014	foundations	
8	Brazil	Usiminas	550	6,00	gravity	2014	foundations	
9	Ukraine	Krzywy Róg	958	4,30	gravity	2015	foundations	
10	India	NHDC	881	7,00	gravity	2015	ground	
11	Indonesia	PT Gunung Raja Paksi	755	5,50	stamped	2015	ground	
12	Poland	WZK Victoria	103	3,25	stamped	2016	ground	>
13	Italy	llva	623	5,00	gravity	2016	foundations	>
14	India	JSW (Vijayanagar)	2500	5,50	stamped	2016	ground	
15	India	VIZAG (Visakhapatnam)	840	7,00	gravity	2016	ground	
16	Brazil	CSN	500	7,00	gravity	2016	foundations	
	Total		13 352					

Source: Polski Koks S.A. – presentation during conference Koksownictwo 2013

Introduction DILLEMA: produce coke or buy coke

Pros and cons:

- coke plant operation: investment and operational cost
- feedstock delivery safety: (coal or coke)
- one's own COG
- environmental protection issues
- coke production profit

Introduction DILLEMA: produce coke or buy coke

Introduction DILLEMA: produce coke or buy coke

Utilisation of production capacity in EU 27

INSTYTUT CHEMICZNEJ PRZERÓBKI WĘGLA

Coal quality versus blend composition Coke quality requirements

	Country of origin			
Parameter	Poland	EU 15	China	
Mechanical strength	M ₄₀ , %	75 – 82	76 - 85	82 – 91
Abrasion	M ₁₀ , %	6.0 - 7.0	6.0 - 7.0	5.6 - 8.0
Reactivity	CRI , %	28 – 35	25 - 30	23 – 30
Strength after reaction	CSR,%	57 – 63	58 - 65	58 – 70
Ash content	A ^d , %	8.5 - 10.0	< 10	9.5 - 13.5
Sulphur content	S ^d , %	0.5 - 0.7	0.5 - 0.7	0.48 - 0.55
Phosphorus content	P ^d , %	0.055 - 0.065	0.025 - 0.065	0.025 - 0.030
Alkalis content (Na ₂ O, K ₂ O)	%	0.35 - 0.45	0.25 - 0.40	0.25 - 0.40

Factors influencing coke quality

Coal charge preparation

Method	DISADVANTAGE	ADVANTAGE
Stamping	 high investment cost need significant modernisation of existing technological lines 	 proved coke quality improvement possibility to use weaker coals battery capacity increase technology positively verified
Heat-Recovery	 need to built new coke oven plant need to provide heat consumer lower coke yield no references in EU 	 possibility to use weaker coals lower gas emission simple technological operation
CDQ	 high investment and operational cost shorter CDQ chamber refractory life expectancy need for surplus gas utilisation 	 battery capacity increase heat consumption decrease lower amount of waste water

Stamp charging technology

Description:

- wet coal charge is stamped (on the charging machine or under coal tower)
- increased bulk density (wet charge) to 1100 kg/m³
- recommended for blend with poorer coking parameters

Technical characteristics (example):

No. of chambers:	86		
Chamber height:	5,0 m		
Chamber length:	15,90 m		
Chamber width:	0,51/0,49 m		
Coking time:	25,5 h		

Remarks:the first 5-meter high stamp charging coke oven battery in Poland in Kombinat
Koksochemiczny "Zabrze" PLC Coke Plant Radlin - start-up 2008
the first stationary stamp charging in EU
the only other new coke oven battery in EU 15 since 2000 is Dillingen Coke Plant

Possible quality improvement:CSR \Rightarrow +5 \div +9%M40 \Rightarrow +6 \div +8%

Heat recovery technology

Description:

- heating direct and indirect
- heating by coking gas combustion directly inside coking chamber
- production only of coke and energy

Technical characteristics (example):			
No. of chambers:	86		
Chamber height:	2,4 m		
Chamber length:	13,7 m		
Chamber width:	4,5 m		
Coking time - extended (typically 48 h)			
By-products - none (heat and power			
production)			

<u>Remarks</u>: production of big lumps of coke - need for crushing bigger coke quality improvement for blends with higher volatile matter content

Possible quality improvement:CSR \Rightarrow +2÷ +10%M40 \Rightarrow +2%

CDQ technology

Description:

- > hot coke goes to cooling chamber where is quenched with circulating inert gas
- > slow cooling down cooling time ~1 h
- > possibility for waste heat recovery (production of steam and electricity)
- technology popular in Northern and Central European countries, Russia and Japan

Technical characteristics (example):

Capacity:	52-56 t _{coke} /h
Chamber volume:	100/150 m ³
Steam production:	25 t/h

<u>Remarks</u>: slow cooling down - smaller stress in coke lump smaller water ballast in coke

Possible quality improvement:CSR \Rightarrow +3%M40 \Rightarrow +1 \div +2%

Challenges for cokemaking industry

- 1. The necessity to keep the quality requirements demanded by coke import traders with production based on the Polish coking coals stocks.
- 2. Implementation and common use of high-tech tools for controlling and operating the technological process.
- 3. Ensuring the production competitiveness:

How to cost effectively produce a high quality coke?

Conclusions

- In recent years there is noticed continuous increase of coke production but mainly outside Europe.
- Blast-furnace is still main technology for steel production.
- BF operator faces dilemma either buy coking coal for own coke plant or buy coke on free market. Both are subjects to the risks.
- The most often situation for BF operator is: own coke production (100% own battery capacity) what supplies 70-80% of maximum coke consumption plus supplementary coke purchase on the market up to full coke consumption.
- Coke production is profitable when relation between coke price C_c and coal blend price C_b is \ge 1,75. Highly profitable results is when $C_c/C_b > 2,5$.

Conclusions

- There are observed difficulties in "hard" coking coals purchase on global market. At the same time price trend is raising. It forces to find technological actions capable to increase coke quality produced from poor blend.
- Well known and very good method for coke quality improvement is also use of charge stamping. New erected coke oven batteries in EU are usually equipped with stamping system (Diilingen, Radlin, Czestochowa, Przyjazn).
- Environmental protection restrictions in EU caused difficulties in new investment plans on new coke oven batteries erection. Producers are constrained to renovation of existing batteries only. This situation opens market for merchant coke plants.
- EU environmental protection policy has immense influence on coke market.

INSTYTUT CHEMICZNEJ PRZERÓBKI WĘGLA

(Institute For Chemical Processing Of Coal) ul. Zamkowa 1; 41-803 Zabrze, Poland

Phone: +48 32 271 00 41 Fax: +48 32 271 08 09

E-mail: office@ichpw.zabrze.pl Internet: www.ichpw.zabrze.pl

Tax ID No. (NIP): 648-000-87-65 Nat. Business Reg. No. (REGON): 000025945

