4<sup>th</sup> German-Japanese Joint Symposium Sapporo, July 7-8, 2014

# Hetero-atom Substituted Carbon Alloys for Energy Conversion and Storage

## Masayuki Kawaguchi Osaka Electro-Communication University Japan



# In Osaka





Umeda Sky Building

Osaka Castle



Famous signboard of crab restaurant

# Apparatus in my lab



CVD apparatus



**HFCVD** apparatus



Photo catalytic measurement

# Today's talk

- 1. Energy storage system in near future
- Hetero-atom substitute carbon alloys: B/C/N materials
  - 2-1. Intercalation of 1st and 2nd group metals into B/C/N materials
  - 2-2. Intercalation mechanism
  - 2-3. Application of intercalation to Na ion secondary batteries
- 3. Hetero-atom substitute carbon alloys:
  - C/N materials
  - **3-1**. Application of C/N materials to capacitors
  - 3-2. Application of C/N materials to catalyst for electrolysis of water

# Energy storage system in near future

#### Natural resources for energy production Ex: Solar cell



## Secondary batteries in the next generation



Natural resources Clarke number Ca > Na > K > Mg > Ba > Li 3.4 2.6 2.4 1.9 0.006



Forecast Solar&Energy, March, 2012

Anode materials for Li-ion batteries has been increasing.

Good host materials?

Next generation? Ca, Na, Mg ion batteries

# Hetero-atom substitute carbon alloys: B/C/N materials



We have many climbing routes to the summit but nobody knows the whole distance.

Ref: Y. Tanabe, E. Yasuda, Carbon 38 (2000) 329-334.

E. Yasuda, M. Inagaki, K. Kaneko, M. Endo, A. Oya and Y. Tanabe, *Carbon Alloy* (2003) Elsevier.

#### New host materials

#### Hetero-atom substituted carbon alloys

# B/C materials $BC_3$ C/N materials $C_2N, C_3N, C_5N$ B/C/N materials $BCN, BC_2N, BC_3N, BC_4N, BC_6N$



# **CVD method** $\rightarrow$ BC<sub>2</sub>N<sup>\*</sup>, BC<sub>3</sub>N<sup>\*\*</sup>, BCN<sup>\*\*</sup>, BC<sub>6</sub>N<sup>\*\*\*</sup>

\*: J. Kouvetakis et al., Synth. Met. 34 (1989) 1.

\*\*: M. Kawaguchi et al., *Chem.Mater.*, 8 (1996) 1197.

\*\*\*: M. Kawaguchi et al., *Carbon*, 37 (1999) 147.

# Solid-gas reaction $\rightarrow$ B/C/N<sup>\*</sup>, BC<sub>3</sub>N<sup>\*\*</sup>

\*T. Ya. Kosolapova *et al., Pooshkovaya Metallurgiya,* 1 (1971) 27. \*\*M. Kawaguchi *et al., J.Chem.Soc., Chem.Commun.,* (1993) 1133.

# Precursor pyrolysis method $\rightarrow$ BC<sub>4</sub>N<sup>\*</sup>, B/C/N<sup>\*\*</sup>

\*J. Bill *et al., Eur. J. Solid State Inorg. Chem.* 29 (1992) 195-212. \*\*H. Konno *et al., J. Power Sources* 195 (2010) 1739.

### CVD apparatus for preparation of B/C/N materials





# Intercalation of 1st and 2nd group metals into B/C/N materials

#### Intercalation of group 1 and 2 metals into B/C/N materials

|                                                                                                                        | Li+                                                  | Na <sup>+</sup>                                    | <b>K</b> +                                           | Mg <sup>2+</sup>                                   | Ca <sup>2+</sup>                            |  |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------|---------------------------------------------|--|
| lon<br>diameter                                                                                                        | $180 \text{ pm}^{\dagger}$                           | 232 pm <sup>+</sup>                                | 304 pm <sup>+</sup>                                  | 172 pm <sup>+</sup>                                | 228 pm <sup>+</sup>                         |  |
| BC <sub>2</sub> N                                                                                                      | 1st stage <sup>*1,2</sup><br>d <sub>i</sub> = 370 pm | 1st stage <sup>*2</sup><br>d <sub>i</sub> = 430 pm | 1st stage <sup>*1,2</sup><br>d <sub>i</sub> = 542 pm | 2nd stage <sup>*4</sup><br>d <sub>i</sub> = 367 pm | 2nd stage<br><i>d</i> <sub>i</sub> = 430 pm |  |
| BC <sub>6</sub> N                                                                                                      | 1st stage <sup>*3</sup><br>d <sub>i</sub> = 365 pm   |                                                    | _                                                    |                                                    | -                                           |  |
| Graphite                                                                                                               | 1st stage<br>d <sub>i</sub> = 370 pm                 | 8th tage<br>d <sub>i</sub> = 450 pm                | 1st stage<br>d <sub>i</sub> = 541 pm                 | No<br>intercalation                                | <b>1st stage</b><br>d <sub>i</sub> = 455 pm |  |
| Already used for the<br>Li ion batteries<br>Under investigation for<br>the Na ion batteries<br>batteries in the future |                                                      |                                                    |                                                      |                                                    |                                             |  |



1084-1090.

#### 1st stage Li-intercalated compound



GIC: Li<sub>x</sub>C<sub>6</sub>

Li<sub>x</sub>BC<sub>6</sub>N

### Preparation of BC<sub>2</sub>N by CVD method



#### Intercalation of alkali metal into BC<sub>2</sub>N Two bulb method



Before the intercalation



After the intercalation Ex: 620 K for Na intercalation

#### Na-BC<sub>2</sub>N prepared by vapor phase reaction



X-ray diffraction pattern of Na-intercalated  $BC_2N$  (Reaction temp.: 620K. Host  $BC_2N$  was prepared at 2070K.

## Intercalation of Mg into BC<sub>2</sub>N

m.p. of Mg = 920K



## Mg-BC<sub>2</sub>N prepared by vapor phase reaction





μ

# X-ray absorption (XAS) and emission spectroscopy (XES)



(Advanced Light Sources in LBL, California)

## XAS spectra (CK region)



TEY X-ray absorption spectrum in the CK region of  $BC_2N$  film, compared with those of graphite, non-crystalline carbon and  $BC_6N$ . Incident angle:45°.

#### XAS spectra (Low energy part in CK region)



TEY X-ray absorption spectrum in the CK region of  $BC_2N$  film, compared with those of graphite, non-crystalline carbon and  $BC_6N$ . Incident angle:45°.

#### Ionization potentials of metals and electron affinities of host materials



M. Kawaguchi, et al., Chem. Commun., DOI: 10.1039/C2CC31435E (2012).

# **Born-Haber Cycle**

$$\Delta H_f = S + \frac{1}{2}D + IE - EA + U$$

 $\Delta H_f$ : Formation Enthalpy **S** : Heats of Sublimation **D** : Dissociation Energy **IE** : Ionization Potential **EA** : Electron Affinity **U** : Lattice Energy  $Mg^{2+}$  $\boxed{\boldsymbol{U}} = -\frac{N_A M \boldsymbol{z} \boldsymbol{z} \boldsymbol{z} \boldsymbol{e}^2}{4 \pi \boldsymbol{\varepsilon}_0 \boldsymbol{r}_0} (1 - \frac{1}{n})$ 

# Application of intercalation to Na ion secondary batteries

#### Electrochemical intercalation of Na into BC<sub>2</sub>N



Discharge/charge curves of  $Na_{\chi}BC_2N$  by galvanostatic method in 1M-NaPF<sub>6</sub>/ EC+DEC. Current density: 100  $\mu$ A/cm<sup>2</sup>. WE: BC<sub>2</sub>N prepared at 1770K.

#### Na-BC<sub>2</sub>N powder prepared by CCCV method



Na-BC<sub>2</sub>N (0.7V vs. Na/Na<sup>+</sup>) by CCCV method in NaPF<sub>6</sub>/EC+DEC. WE: BC<sub>2</sub>N prepared at 1770K.

#### Na-BC<sub>2</sub>N film prepared by CCCV method



in NaPF<sub>6</sub>/EC+DEC. WE: BC<sub>2</sub>N prepared at 1770K.

# Carbon Alloy (CA) ORR Catalysts (CAOC)

Discovered and named by the Gunma Univ. Carbon Laboratory

#### Introduction of Heteroatoms





#### Two types of CAs by GUCL



Surface defects are important N. Kannari et al. Carbon 50, 2941(2012)



B-N-C moiety is important J. Ozaki et al. Carbon 45, 1847(2012)



http://autocone.jp/motorshow/tokyo/2013/t oyota/1553554/photo/0002.html

# Hetero-atom substitute carbon alloys: C/N materials

#### Preparation methods for C/N materials

## **CVD method** $\rightarrow$ C<sub>X</sub>N<sup>\*</sup>, C<sub>3</sub>N<sub>4</sub> type<sup>\*\*</sup>

\*T. Nakajima *et al.*, *Carbon* 35 (1997) 203. \*\*M. Kawaguchi et al., *Carbon* 42 (2004) 345.

# Solid-gas reaction $\rightarrow$ (C<sub>3</sub>N<sub>3</sub>)<sub>2</sub>(NH)<sub>3</sub><sup>\*</sup>, C<sub>3</sub>N<sub>4</sub> type <sup>\*\*</sup>

\*M. Kawaguchi et al., Chem. Mater. 7 (1995) 257-264.

\*\*M. Kawaguchi et al., Chem. Lett. (1997) 1003-1004.

## Precursor pyrolysis method $\rightarrow C_x N^*$ , $C_3 N^{**}$ , $C_2 N^{***}$

\*H. Konno et al., *Carbon* 35 (1997) 669.
\*\*M. Kawaguchi et al., *J. Power Sources* 172 (2007) 481.
\*\*\*M. Kawaguchi et al., *J. Electrochem. Soc.* 157 (2010) A35.

### Template method $\rightarrow C_x N$

G. Lota et al., Chem. Phys. Lett. 404 (2005) 53. D. Hulicova, et al., *Chem. Mater.* 17 (2005) 1241.

#### C/N materials prepared by the present authors



# Color of C/N materials



# Application of C/N materials to capacitors

#### Preparation and application of C/N materials



### Structure of C/N material



XRD patterns of C/N materials prepared by the pyrolysis of AMN at the temperature between 470K and 1270K.

## Compositions of C/N material



FTIR spectra of C/N material

AMN1120K AMN1070K AMN1020K

# Chemical bonds in C/N material



ESCA N1s spectra of C/N materials prepared from AMN at (A) 970K, (B) 1020K, (C) 1070K, (D) 1120K, and (E) 1170K.

#### C/N material prepared from AMN



Kawaguchi M, Yamanaka T, Hayashi Y, Oda H, J. Electrochem. Soc. 2010; 157:A35-A40.

## Comparison of CV curves



Figure Cyclic voltammograms for (a) C/N material prepared by the pyrolysis of AMN at 1020K (BET:230 m<sup>2</sup>/g) and (b) activated carbon (BET:2300 m<sup>2</sup>/g). 1M-H<sub>2</sub>SO<sub>4</sub> aqueous solution. Scan speed:1mV/sec. Three electrode cell.

Kawaguchi M, et al., J. Electrochem. Soc. 2010; **157**:A35-A40.

### Comparison of capacitive performances

|                                                    | AC                      | C <sub>3</sub> N        | C <sub>2</sub> N        |
|----------------------------------------------------|-------------------------|-------------------------|-------------------------|
| Gravimetric capacity (F/g)                         | 180                     | 160                     | 200                     |
| Specific surface area (m <sup>2</sup> /g)          | 2300                    | 880                     | 230                     |
| Capacity per unit surface area (F/m <sup>2</sup> ) | 7.83 × 10 <sup>-2</sup> | 18.2 × 10 <sup>-2</sup> | 91.3 × 10 <sup>-2</sup> |
| Apparent density (g/cm <sup>3</sup> )              | 0.34                    | 0.68                    | 0.65                    |
| Volumetric capacity (F/cm <sup>3</sup> )           | 61                      | 110                     | 130                     |

AC: activated carbon

CAN1070K: C/N material prepared from CAN (2,3,6,7-tetracyano 1,4,5,8-tetraazanaphthalene)

AMN1020K: C/N material prepared from AMN (diaminomaleonitrile)

#### Water adsorption Another important role of nitrogen



*Figure* Water adsorption isotherm (290K) of C/N material prepared by the pyrolysis of AMN at 1020K, compared with that of activated carbon.

## Role of nitrogen in C/N material



Supply of ions into micro pores

and

2) Interaction of pyridine-type nitrogen with protons



Addition of pseudo capacitance



Ref.: M. Kawaguchi, et al., J. Electrochem. Soc., 2010, 157, P13-P17.

# Application of C/N materials to catalyst for electrolysis of water

#### Photo catalysts for H<sub>2</sub> production from water

- Metal oxides and nitrides: Maeda K., et al., J. Am. Chem. Soc., 2005; 127,8286-8287.
   A lot of researches
- C<sub>3</sub>N<sub>4</sub> type: Wang X, et al., Nat. Mater., 2009; 8:76-80.

#### **1** Not so many researches

3 wt % Pt was deposited on  $C_3N_4$  for the supporting catalyst.

#### Apparatus for measurement of photo catalytic behavior



## Photo Catalytic behavior of C<sub>2</sub>N



## Photo Catalytic behavior of C<sub>3</sub>N



Time / sec

Change in photocurrent for  $C_3N$  prepared from CAN in 1.0 M  $H_2SO_4$ . The electrode was intermittently irradiated by visible light.

# Comparison of photo catalytic current

| Sampla                           | Photo current density µA/cm <sup>2</sup> |                      |  |
|----------------------------------|------------------------------------------|----------------------|--|
| Sample                           | Visible light                            | UV-Visible light     |  |
| TiO <sub>2</sub> (1200K)*        | 1.00                                     | 1.20                 |  |
| TiO <sub>2</sub> (870K)**        | 4.50×10 <sup>-1</sup>                    | 2.73×10 <sup>2</sup> |  |
| TiO <sub>2</sub> (ST-01: powder) | 1.35                                     | 2.78                 |  |
| C <sub>2</sub> N (AMN1020K)      | 9.87                                     | 1.33×10              |  |
| (AMN470K)                        | 2.36                                     | 2.10                 |  |
| C <sub>3</sub> N (CAN1070K)      | 1.28×10                                  | 1.55×10              |  |
| (CAN670K)                        | 1.47                                     | 5.26                 |  |

\*TiO<sub>2</sub> prepared on Ti plate at 1200 K \*\*TiO<sub>2</sub> prepared on Ti plate at 870 K

## Photo catalytic behavior of C<sub>3</sub>N



Time / sec

Change in open circuit potential for  $C_3N$  prepared from CAN in 1.0 M  $H_2SO_4$ . The electrode was intermittently irradiated by UV with visible light.

## Electronic structure of $C_3N$ in $H_2SO_4$ aqueous solution



## Electronic structure of $C_3N$ in $H_2SO_4$ aqueous solution



# Summary

1. B/C/N materials intercalate Na and Mg to make intercalation compounds, which can be applied to anodes of Na (and Mg in future) ion batteries.

2. C/N materials have several kinds of nitrogen in the structure and adsorb ions on the structure, which can be applied to capacitors and photo catalysts.

## Acknowledgements

#### Students (OECU):

Mr. Kaoru Yamada Mr. Yuki Ishida Mr. Hiromichi Ishikawa Mr. Akihiro Kurasaki Mr. Yushiki Hayashi Mr. Takeshi Yamanaka Mr. Yasuto Imai Mr. Shinya Kuroda Mr. Katsuya Onishi Ms. Sayoko Yagi Mr. Akinori Itoh

Helpful supports and advice: Prof. Hirokazu Oda (Kansai U.) Prof. Yasuji Muramatsu (U. Hyogo) Prof. Noboru Akuzawa (Tokyo N.C.T.) Dr. Masaya Kodama (AIST) Prof. Hiroyuki Enomoto (OECU) Mr. Hideaki Itoh (Nippon Soda Co.) Prof. Claire Hérold (Nancy Univ.) Prof. Sébastien Cahen (Nancy Univ.)

This work was partly supported by MEXT.KAKENHI (23350103, 19550197, and 11650865), Japan.

### Thank you for your attention !



### Danke schön!

#### ご清聴ありがとうございます!