

# Skalierbare Oxo-Funktionalisierung von sp<sup>2</sup>-hybridisierten Kohlenstoffallotropen



#### 7. 11. 2014 Dr. Siegfried Eigler Friedrich-Alexander-Universität Erlangen-Nürnberg



# sp<sup>2</sup>-Carbon Allotropes - Chemistry

sp<sup>2</sup>-Carbon Allotropes:





graphite



CNT

polydisperse



## Monodisperse – C<sub>59</sub>N



R. Neubauer *et al., Angew. Chem. Int. Ed.* **2012**, *51*, 11722; *Angew. Chem.* **2012**, *124*, 11892; R. Eigler *et al., Chem. Commun.* **2014**, *50*, 2021.



# Monodisperse – C<sub>59</sub>N



R. Neubauer *et al., Angew. Chem. Int. Ed.* **2012**, *51*, 11722; *Angew. Chem.* **2012**, *124*, 11892; R. Eigler *et al., Chem. Commun.* **2014**, *50*, 2021.



# Monodisperse – C<sub>59</sub>N



R. Neubauer *et al., Angew. Chem. Int. Ed.* **2012**, *51*, 11722; *Angew. Chem.* **2012**, *124*, 11892; R. Eigler *et al., Chem. Commun.* **2014**, *50*, 2021.

# **Novel Reaction Principle – SWCNTs**



F. Hof, S. Bosch, S. Eigler, F. Hauke, A. Hirsch, J. Am. Chem. Soc. 2013, 135, 18385.

# **Novel Reaction Principle – SWCNTs**



F. Hof, S. Bosch, S. Eigler, F. Hauke, A. Hirsch, J. Am. Chem. Soc. 2013, 135, 18385.



## Defects

#### **Carbon Framework in Graphene**



graphene with defects



graphene without defects

S. Eigler et al., Adv. Mater. 2013, 25, 3583; S. Eigler, A. Hirsch Angew. Chem. Int. Ed. 2014, 43, 7720.

# Synthesis of ai-GO: preventing CO<sub>2</sub> formation



graphite oxide

S. Eigler et al., Adv. Mater. 2013, 25, 3583; S. Eigler, A. Hirsch Angew. Chem. Int. Ed. 2014, 43, 7720.



# Ai-GO

#### ai-GO dispersion:



#### Langmuir-Blodgett:







S. Eigler et al., Carbon 2012, 50, 3666.



# Size of flakes of ai-GO

#### Optical microscope image:



#### AFM images:



### **Particle Size – Processing Parameter**

Collaboration: Prof. Peukert, Johannes Walter, Thomas J. Nacken

Model: relation - lateral dimension and gravity field





Example: (15 min at 10 °C) average size of flakes: 10-30 µm 1. 7700 U/min (removal of small flakes) 2. 4600 U/min (removal of large particles) Sorting flakes by size

J. Walter et al., Small 2014, DOI:10.1002/smll.201401940.

### **Graphene Oxide with Defects and Without Defects**



S. Eigler *et al.*, *Adv. Mater.* **2013**, *25*, 3583; S. Eigler, A. Hirsch *Angew. Chem. Int. Ed.* **2014**, *43*, 7720; S. Eigler, *Phys. Chem. Chem. Phys.* **2014**, *16*, 19832.

### **Electrical Properties of graphene from ai-GO**



Devices: (Prof. Müller / Dr. Enzelberger-Heim)

Physical measurements confirm 2D nature of graphene

Flakes defect density of about 0.01%:  $\mu = 2000 \text{ cm}^2/\text{Vs}$ defect density about 0.3%:  $\mu = 250 \text{ cm}^2/\text{Vs}$ 

Reference from literature (defect density several %):  $\mu = 0.1-10 \text{ cm}^2/\text{Vs}$ 

S. Eigler et al., Adv. Mater. 2013, 25, 3583.

## Structure of ai-GO



ai-GO



Regiochemistry not known to date

Both sides of basal plane:

Hydroxyl groups Epoxy groups Organosulfate groups

S. Eigler et al., Chem. Eur. J. 2013, 19, 9490.



### **Reduction of Film of Flakes of ai-GO**

2 HI 
$$\longrightarrow$$
  $I_2 + 2e^{\ominus} + 2H^{\oplus}$ 



#### Current process: average density of defects: 0.3% and 10-30 µm flakes

S. Eigler *et al.*, *Chem. Commun.* **2013**, *49*, 7391; S. Eigler *et al.*, *J. Phys. Chem. C* **2014**, *118*, 7698; S. Eigler, *Phys. Chem. Chem. Phys.* **2014**, *118*, 19832.



HRTEM image of GO, *in situ* reduced: (Prof. Spiecker / Dr. Butz, Erlangen)







#### **Reaction occurs in solids**

S. Eigler et al., Nanoscale 2013, 5, 12136.







Analysis with <sup>15</sup>N labeled azide:

FTIR:







Analysis of supernatant after centrifugation:

Ba<sup>2+</sup> + SO<sub>4</sub><sup>2-</sup> → BaSO<sub>4</sub> ↓

Purified ai-GO: no sulfate found in supernatant

Re-dispersed ai-GO-N<sub>3</sub>: BaSO<sub>4</sub> precipitate found

#### Organosulfate acts as leaving group



S. Eigler et al., Nanoscale 2013, 5, 12136.



Evaluation of the chemical structure:

solid state <sup>15</sup>N NMR: (Prof. Ishii, Chicago)





Geometry: B3LYP/6-31G(d) Chemical shielding tensors: GIAO with BPW91/6-311+G(d) (calibrated method)

S. Eigler et al., Nanoscale 2013, 5, 12136.

**Basis for controlled synthesis of graphene architectures** 

- ai-GO with few defects (average 0.3%)
- Carbon framework stable up to 100 °C
- Carbon framework stable for functionalization
- Organosulfate groups used for functionalization

Graphene oxide: Collective term for various oxo-functionalized graphene derivatives with a variable density of defects



### Acknowledgement



Financial support: since 2014: DFG (EI-938); Mentors: Prof. Hirsch, Prof. Steinrück, Prof. Halik

#### **Co-workers**:

Stefan Grimm, Philipp Rietsch, Christian Halbig **Prof. Hirsch group member:** Regina Eigler, Ferdinand Hof

#### **Devices:**

Dr. Michael Enzelberger-Heim Philipp Hofmann Dr. Wolfgang Kroener Prof. Paul Müller

#### **Devices self assambled:**

Dr. Zhenxing Wang Prof. Halik

#### XPS: Michael Röckert Dr. Jie Xiao Dr. Christian Papp Dr. Ole Lytken Prof. Hans-Peter Steinrück

HRTEM: Dr. Benjamin Butz Christian Dolle Prof. Spiecker

DFG Deutsche Forschungsgemeinschaft







ssNMR:

Yichen Hu Prof. Ishii Prof. Walter Bauer

#### Particle size:

Johannes Walter, Thomas J. Nacken, Cornelia Damm, Thaseem Thajudeen, Prof. Peukert







# Thanks for your kind attention





