Multifunktionale Elektrodenmaterialien von Hydrothermalem Kohlenstoff

AKK-Fachausschuss "Neue Kohlenstoff-Formen" Selb, 6. November 2014

Sylvia Reiche

Max-Planck-Institut für Chemische Energiekonversion ·

Department of Heterogeneous Reactions · Prof. Schlögl

I. Background & Mission

II. Tuning Carbon by HTC-Process Parameters

III. Tuning Carbon by N-functionalization

Heterogeneous Reactions Prof. Dr. Robert Schlögl

Biophysical Chemistry Prof. Dr. Dr. h. c. Wolfgang Lubitz

Molecular Theory and Spectroscopy

Prof. Dr. Frank Neese

Department Heterogeneous Reactions

 $2 \text{ H}_2\text{O} \rightarrow 2 \text{ H}_2 + \text{O}_2$

...most challenging

1. Conductivity

2. Performance

High number of sites for:

- ≻H₂O adsorption
- ≻H-O dissociation
- ≻4 **e**⁻ transfer
- $>O_2$ desorption

1.23 V + η

high energetic intermediates

1. Conductivity

- ✓ RuO₂: 2.0 x10⁶ S/m
- ✓ IrO₂: 1.7 x 10⁶ S/m

2. Performance

High number of sites for:

- ✓ H₂O adsorption
- ✓ H-O dissociation
- ✓ 4 e⁻ transfer
- \checkmark O₂ desorption

✓ 1.23 V + η

high energetic intermediates

Electrode requirements

Conductivity Performance

by Alex Falco www.toonpool.com/cartoons/balance_106256

4. Sustainability

- Based on abundant, renewable resources
- Non-toxic to human health and environment

Catalyst Design

Catalyst Design

Mn/Co/Ni/FeO_x on carbon

Catalyst Design

Mn/Co/Ni/FeO_x on carbon

Purification

Ref. Ali Rinaldi Klaus Friedel

Mn/Co/Ni/FeO_x on carbon

Purification

Ref. Ali Rinaldi Klaus Friedel Oxidation by HNO₃ O- or N-sputtering Chemical grafting

Ref. Rosita Arrigo Henan Li Olivier Majoulet JP Tessonnier Klaus Friedel

Mn/Co/Ni/FeO_x on carbon

Purification

Ref. Ali Rinaldi Klaus Friedel Oxidation by HNO₃ O- or N-sputtering Chemical grafting

Ref. Rosita Arrigo Henan Li Olivier Majoulet JP Tessonnier Klaus Friedel Particle deposition by impregnation or precipitation

Ref. JP Tessonnier Alberto Villa Dangsheng Su, Jiang Zhang Lidong Shao Katharina Mette, Malte Behrens

Mn/Co/Ni/FeO_x on carbon

Purification

Ref. Ali Rinaldi Klaus Friedel Oxidation by HNO₃ O- or N-sputtering Chemical grafting

Ref. Rosita Arrigo Henan Li Olivier Majoulet JP Tessonnier Klaus Friedel Atomic layer deposition (ALD)

Saskia Buller MPI-CEC

S. Buller

Electrode requirements

Conductivity Performance

5. Shaping feasibility

- Bulk shape of specific hierarchical structure
- Possibility of quantitative analysis before and after test reaction
- Prevention of unknown site effects by binder and post-processing

Concept

Hydrothermal carbonization

Reaction vessel = autoclave

5-20 wt% glucose solution

180-220°C

2-20 h

Supernatant

Carbonaceous Product

Hydrothermal carbonization

12 x 50 ml 12 x 3 g product

2 x 300 ml 2 x 20 g

2000 ml 80-100 g

Electrode requirements

6. Scalability

Sufficient material for thorough testing and analytics

Electrode preparation

HydroThermal Carbon

Electrode preparation

Electrode Preparation

Focus of Research

Properties of final electrode determined by hydrothermal synthesis process

Tuning of carbon properties by reaction conditions

HydroThermal Carbon

Polyol (e.g. cellulose, glucose)

pH-dependence: powder density

Natalia Kowalew

pH-dependence: SEM

Wiebke Frandsen (FHI Berlin)

pH-dependence: TG-MS

Influence of pH variation

Electrode properties

HydroThermal Carbon

рН	m ₀ [g]	т ₉₀₀ [g]	mass loss	geometric density [g/cm ³]
0	0.256	0.146	43.0%	0.9
3	0.253	0.132	47.8%	0.7
6	0.255	0.133	47.8%	0.8

by Marc Willinger FHI Berlin

Contrast change \rightarrow . mass-thickness contrast is reduced. Volume (particle size) remains roughly constant

by Marc Willinger FHI Berlin

not only has the contrast changed, also the structure of the carbon (in agreement with diffraction) has changed.

Diffraction pattern shows rings due to graphitic carbon...

by Marc Willinger FHI Berlin

Carbon exhibits "Tagliatellelike" structure similar to glassy carbon

Electrode properties

319: pH 0 contact angle : 86°

Equipment at Prof. Axel Rosenhahn (RUB)

320: pH 6 contact angle : 21°

HTC_900°C					
рН	С	Н	N	0	
	[wt%]	[wt%]	[wt%]	[wt%]	
0	92.5	1.7	2.9	3.0	
3	97.7	0.45	0.48	1.4	
6	93.9	0.82	0.2	5.1	

Resistance by 4 point probe

Sample	$ρ_{Vol}$ [mΩ]		
pH 0	10-30		
pH 1	20-50		
рН 3	40-80		
pH 6	40-100		

Electrode properties

рН	ΔE _p (mV)	Capacitance (mF/cm ²)
0	63	0.09
1	75	0.42
6	179	95.7

Hydrothermal Carbon

mpi

Post-treatment of HTC synthesized at pH 3-6

Sample	C [wt%]	H [wt%]	N [wt%]	Yield [%]
HTC (pH3)	66.5	4.0	4.8	65.2
HTC (pH4)	63.5	4.2	5.3	62.1
HTC (pH5)	62.3	4.4	5.3	61.6
HTC (pH6)	63.3	4.4	5.5	60.4

pH 3 + pH 0

900°C 250 ml/min N_2 5 h

16002-017 1.0kV x35.0k SE(U,LA0)

1.00um

Precursor

G:U [mol]	C [wt%]	H [wt%]	N [wt%]	O [wt%]
HTC _υ	65	5.6	17	13
HTCIMI	70	5.6	9.0	16
HTC _{URO}	59	5.8	16	20
HTC _{pH3pH0}	67	4.0	4.8	24
HTC _{pH6}	68	6.3	0	26

0.8

pН

П.

Tuning Carbon by HTC-Process Parameters → Low pH-synthesis for high density and high electric conductivity

→ High pH-synthesis for small particles of higher content of -C=O for post-functionalization

Tuning Carbon by N-functionalization

 \rightarrow improvement of electron transfer properties and conductivity

→ N-HTC portfolio for systematic study of structure reactivity relationship

Acknowledgment

Natalia Kowalew

Jan Straten

Norbert Dickmann

Youngmi Yi

Prof. Axel Rosenhahn (RUB)

Robert Rameker

Wiebke Frandsen FHI

Marc

Marc Willinger FHI

Max Planck Society

Max-Buchner-Forschungsstiftung

Thank you very much for your kind attention

sylvia.reiche@cec.mpg.de