Carbon Alloy Catalysts for Oxygen Reduction Reaction Derived from a Humic Acid

M. Takigami, S. Baba and J. Ozaki Graduate School of Science and Technology Gunma University Japan

Background of this research

Thermosetting polymer + transition metal compound Carbon having catalytic activity for oxygen reduction reaction

(ORR)

20 - 50 nm

NSCCs NS carbons embedded in amorphous carbons

- The catalytic activities of the carbons are enhanced by doping nitrogen to the carbons.
- Carbons having catalytic activity and heterogeneity in elemental components and/or structure were defined "Carbon Alloy Catalysts". NSCCs : CA catalysts

Carbons with high ORR activities Natural products

Why "Humic Acid"?

- Humic acid (HA) is a natural product based on biomaterials and a sustainable material.
- HA has some similarity with phenol resin, which is a popular raw material for NSCCs.

Structure of humic acid

Humic acid (HA) is produced by biodegradation of dead organic matters and it does not have a single molecular structure. It contains a small amount of nitrogen. It is a complex mixture of acids including a lot of carboxyl and phenolate groups. HA distributes on the surface of the earth; in soil, in lakes and rivers as sediments. In the present study, we examine the carbons from a type of HA.

Humic acid

F. J. Stevenson, Humic Chemistry : Genesis, Composition, reactions, 2nd Ed., (1994), John Wiley &Sons, Canada, p.289.

Aims of the research

Do HA give catalysts with high ORR activity? What kinds of role do cobalt and nitrogen have for ORR reaction? What are required to have CA catalysts with higher ORR activities?

Properties of additives

Additive	Chemical formular	Abbreviation	Solubility in water
Cobalt phthalocyanine	C ₃₂ H ₁₆ CoN ₈	CoPc	Insoluble
Cobalt chloride	CoCl ₂	CoCl ₂	53g/100mL
Phthalocyanine	$C_{32}H_{18}N_8$	H ₂ Pc	Insoluble

CoPc

Comparison	Expected information
HA-CoPc and HA-H ₂ Pc	Effect of Co
HA-CoPc and HA-CoCl ₂	Effect of Co distribution Effect of N
HA-CoPc and HA-CoCl ₂ -H ₂ Pc	Effect of Co distribution Effect of N

Cited from Chemical Book

 H_2Pc

Preparation of carbon precursors

Structure of carbon-precursors - XRD

Structure of carbon-precursors – FT-IR

Summary of precursors

* Cobalt distributes uniformly in HA-CoCl₂, however, the distribution is partially disturbed in HA-CoCl₂-H₂Pc, because of H₂Pc.

*Cobalt exists as counter ion of carboxyl groups which is contained in HA abundantly.

*In HA-CoPc, Co does not distribute uniformly because of the solubility of CoPc in water.

Summary of precursors

- * Cobalt distributes uniformly in HA-CoCl₂, however, the distribution is partially disturbed in HA-CoCl₂-H₂Pc, because of H₂Pc.
- *Cobalt exists as counter ion of carboxyl groups which is contained in HA abundantly.

*In HA-CoPc, Co does not distribute uniformly because of the solubility of CoPc in water.

Preparation of carbon alloy catalysts

Evaluation of ORR catalytic

Rotating Ring Disk Electrode Reference electrode: Reversible hydrogen electrode Counter electrode: Glassy carbon Working electrode : Carbon catalyst Electrolyte : 0.5M H2SO4 Rotation: 1500 rpm Temperature: RT Scanning : 1~0 V, 1 mV/sec

ORR voltammogram of carbon derived from HA-CoPc

 E_{02} : Onset potential (10 mA/cm²) $i_{0.7V}$: Current density at 0.7 V

Potential (V vs. RHE)

Comparison	Information	Results
HA-CoPc and HA-H ₂ Pc	Со	Co is essential
HA-CoPc and	Co distribution	Without N, uniform distribution of
HA-CoCl ₂	N	Co does not result in high ORR
HA-CoPc and	Co distribution	Uniform distribution of Co causes
HA-CoCl ₂ -H ₂ Pc	N	high ORR in the presence of N

Conclusions

HA gives catalysts with high ORR activity.

Co and N are essential to have highly active ORR CA catalysts. Both of them contribute to large E_{O2} and $|i_{0.7V}|$.

Coexistence of Co and N, and uniform distribution of Co are important to have high ORR CA catalysts.