Application of carbon-coated anodic aluminum oxide film for biofuel cell

<u>Hanako Tawata¹</u>, Alberto Castro-Muñiz¹, Hiroshi Komiyama¹, Wataru Nakayama¹, Yasuto Hoshikawa¹, Takashi Kyotani¹, Kouichi Nozaki², Yoshihiko Amano², Tetsuji Itoh³

1) Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan

- 2) Faculty of Engineering, Shinshu University, Japan
- 3) National Institute of Advanced Industrial Science and Technology, Japan

Enzymatic biofuel cell

Energy conversion device that transforms chemical energy to electrical energy by using enzyme as electrocatalysts and can operate under mild conditions

Immobilization of enzyme

Physical adsorption method

Electrophoresis method

Objective of this study

To prepare enzymatic electrodes for biofuel cells by immobilizing enzyme onto the CAAO film in two ways and consider about enzyme immobilization method

Preparation of carbon-coated anodic aluminum oxide (CAAO) film

Immobilization of enzyme into the CAAO nanochannels

Anode Fructose dehydrogenase (FDH)

Cathode Laccase

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$

Physical adsorption method

McIlvaine buffer solution (pH 5) Anode \Rightarrow 0.5 mg/ml FDH, 15 h Cathode \Rightarrow 11 µg/ml laccase, 48 h

Immobilization of enzyme into the CAAO nanochannels

Electrophoresis method

Anode

+ 0.6 V vs. Ag / AgCl, I h McIlcaine buffer solution (pH 5) 3 mg/ml FDH – 200 mM D-fructose + 0.65 V vs. Ag / AgCl, 3 h McIlvaine buffer solution (pH 5) 4.5 µg/ml laccase

Experimental

Measurement of electrical performance (Cyclic voltammetry)

Maximum current density Physical adsorption method ⇒ 0.7 mA / cm² at 0.7 V

Electrophoresis by enzymatic reaction \Rightarrow 1.2 mA / cm² at 0.7 V

Maximum current density Physical adsorption method ⇒ -0.9 mA / cm² at 0V

► Electrophoresis by pH control ⇒ -1.1 mA / cm² at 0V I Carbon-coated anodic aluminum oxide films can used as enzymatic electrode

Electrophoresis method is a more efficient way of enzyme immobilization than physical adsorption method

⇒ Development of Enzymatic biofuel cells with high electrical performance is expected by using electrophoresis method

Quantitative determination of immobilized enzyme

BCA method \Rightarrow Common protein quantification method

TPD method \Rightarrow Analyze gas desorbed from sample by heating under high vacuum

Investigation of diffusion effect

Investigation of stability of enzymatic electrode

Pore layer

Barrier layer

Redox potential \Rightarrow BOD < Laccase</th>Maximum current density \Rightarrow BOD < Laccase</td>

Laccase id more suitable than BOD to develop enzymatic electrode with high electrical performance