Carbon Materials for Li-Ion Battery: Features and Benefits

Frühjahrstagung des Arbeitskreises Kohlenstoffe Meitingen, 26. April 2016

Imerys Graphite & Carbon Proprietary Information

Carbon Materials for Li-Ion Battery: Features and Benefits

Outline

- Introduction of IMERYS
- Introduction of IMERYS Graphite & Carbon
- ◆ Electrochemical Cell Li-Ion Battery
- Carbon black and Graphite conductive additives for the positive electrode
- Specialty Graphites for the negative electrode
- Carbon-based current collector coating

IMERYS Introduction

Imerys, the world leader in mineral specialties for industry

- Created in 1999 out of the industrial minerals activity of Imetal (French group)
- +16,000 employees
- ◆ 250 industrial sites in +50 countries
- ◆ 8 main R&D centres 25 regional laboratories 400 scientists and technicians
- ◆ 2015 sales → 4,087 M€
- +30 minerals including bentonite, calcium carbonate, feldspar, graphite, kaolin, mica, talc and wollastonite

Imerys products, finding applications in everyday life

- Automotive, Industrial Equipments
- Energy
- Electronics
- Construction
- Decorative Materials and Fittings
- Steelmaking and Metallurgy

- Agri-Food
- Paper
- Packaging
- Health, Beauty and Care
- Horticulture, Protection of Flora

IMERYS Graphite & Carbon Introduction: History

- 1908 Officine del Gottardo is founded
- 1917 Synthetic Graphite manufactured for the first time
- 1924 Acquisition of Officine del Gottardo by LONZA Ltd.
- **1982** Willebroek plant (under Erachem group) starts producing Conductive Carbon Black
- 1989 Stratmin Graphite starts mining natural graphite in Canada
- 1994 LONZA G+T is acquired by IMETAL and becomes TIMCAL Ltd
- 1995 TIMCAL America is founded
- 1997 Changzhou TIMCAL Graphite Corp. is established in China
- 1999 IMETAL changes name to IMERYS; TIMCAL and Stratmin are combined into TIMCAL Group
- 2000 TIMCAL Japan KK and TIMCAL Germany are set up
 - ma mar and a second

- 2001 TIMCAL Fuji facility opens in Japan
- 2002 Stratmin becomes TIMCAL Canada; Terrebonne plant opens
- 2003 TIMCAL acquires the Carbon Black activities at Willebroek, Belgium
- 2005 TIMCAL representative office in the UK is launched
- 2007 TIMCAL acquires 85% of Baotou Jing Yuan Graphite Co in China
- 2008 TIMCAL celebrates 100 Years of Production in its Swiss plant Bodio
- 2010 TIMCAL representative office in Singapore is launched
- 2014 TIMCAL changes its name to Imerys Graphite & Carbon
- 2015 Imerys Graphite & Carbon opens a R&D Center in Japan

Imerys Graphite & Carbon Proprietary Information

IMERYS Graphite & Carbon Introduction: Our Markets

Main Fields of Application for TIMCAL Carbon Powder-Based Solutions

- Alkaline Batteries
- Zn-C Batteries
- Li Batteries
- Li-ion Batteries
- Lead Acid
- ◆ Fuel Cells
- Supercaps
- Can Coatings

Engineering Materials

- Friction Materials
- Powder Metallurgy
 & Hard Metals
- Carbon Brushes
- Foils
- Ceramics
- Pencils
- Catalysts
- Synthetic Diamonds
- Powders for Lubricants

Conductive Plastics

- Conductive Rubbers
- Power Cable Compounds
- Filled PTFE
- Conductive Coatings & Paints

- Refractories
- Crucibles
- Hot Metal Toppings

IMERYS Graphite & Carbon Introduction

Manufacturing Plants

Electrochemical Cell – Li-Ion Battery

Introduction: Li-Ion Battery

- Negative Electrode Anode
 - Graphite
 - Hard Carbon
 - ◆ Li₄Ti₅O₁₂ (LTO)
 - Silicon
 - Tin
 - ◆ SiO_x
 - Metal alloys
 - **♦** ...

- Positive Electrode Cathode
 - ◆ LiCoO₂ (LCO, layer)
 - LiNi_xMn_yCo_zO₂ (NMC, spinel)
 - ◆ LiMn₂O₄ (LMO, spinel)
 - ◆ LiFePO₄ (LFP, olivine)
 - **♦** ...

Electrochemical Cell – Li-Ion Battery

• Li-Ion Battery or Li-Carbon Battery?

- Influence of conductive Carbon Black on the cycling stability of the positive electrode
 - Conductive Carbon Blacks improve cycling stability and efficient positive material utilisation thanks to setting up a conductive network already at low carbon additive concentration

- Evaluating conductive additives for positive Li-ion battery electrode
 - Carbon Black Super C65: percolation threshold at low additive amount
 - Graphite KS 6 L: compressibility and low ultimate resistivity (at high additive amounts)

- Graphite and Carbon Black complementary properties in the positive electrode
 - Combine the low percolation threshold of conducting Carbon Black with the good compressibility of Graphite

Super C65 : KS6L ratios between 1:1 and 1:3 leads to low resistivity & high density

Imerys Graphite & Carbon Proprietary Information

- Graphite and Carbon Black complementary properties in the positive electrode
 - SuperC65 : KS 6 L blend vs SuperC65 alone: same specific charge because of the similar electrical resistivity of the electrodes, but improved charge density when using graphite because of its greater compressibility compared to carbon black

Imerys Graphite & Carbon Proprietary Information

- Graphite and Carbon Black complementary properties in the positive electrode
 - The adhesion decreases with increasing amount of conductive additive due to the contribution of the conductive additive to binder consumption
 - Thanks to its lower surface area compared to carbon black, graphite helps maintaining sufficient adhesion

Graphite & Carbo

- Graphite and Carbon Black complementary properties in the positive electrode
 - Thanks to its lower surface area compared to carbon black, graphite helps favorable rheology for electrode processing

Specialty Graphites for the Negative electrode

- Increased electrode density with Specialty Graphites Additives
 - Addition of 2 8 % C-NERGY[™] SFG 15 L significantly increases density of artificial graphite based negative electrodes
 - Optimal amount of SFG 15 L depends on hardness of active material and targeted electrode density

Specialty Graphites for the Negative electrode

- Specialty Graphites Additives also work as an active material in the negative electrode
 - Very high reversible capacity: close to 372 Ah/kg, theoretical limit
 - Very high electrical conductivity

Specialty Graphites for the Negative electrode

- Specialty Graphites Additives improves Cycling Stability
 - Improved cycling stability is achieved by adding 2 8 % C-NERGY[™] SFG 15 L to active material, independent if artificial or coated natural graphite
 - Improvement in cycling stability has to be balanced vs increase in BET surface area and binder absorption due to SFG 15 L addition

Carbon-based current collector coating

- Water-based Ready-to-use dispersion of very fine carbon powder
 - \blacklozenge Allows for coating of a homogeneous carbon layer of ca. 1 μm on the current collector
 - Very little contribution to inactive volume and weight
 - Dramatically reduced impedance in positive electrodes, leading to improved high rate performance of the cell

■ C-NERGYTM conductive Carbon Blacks and Graphites have **complementary properties** for Li-ion battery **cathodes**

- Conductive Carbon Blacks lead to lower percolation threshold enabling higher specific charge
- Graphite additives help to improve the reversible charge density and the electrode adhesion
- Graphite additives help to improve the manufacturing of electrode due to favorable rheology
- C-NERGYTM L-grades specialty graphites are very efficient as active additive for Li-ion battery anodes thanks to
 - improved cycling stability and battery lifetime
 - increased electrode density
 - reduced volume resistivity
- C-NERGYTM water-based ready-to-use dispersions for current collector
 - Dramatically reduced impedance in positive electrodes, leading to improved high rate performance of the cell

My special thanks to: T. Hiroyuki, F. Mornaghini, P. Ulmann

