Lithium-, Silizium und Kohlenstoffanoden für el.chem. Speicher warum auch Kohlenstoff ein NextGen Material sein wird

Frühjahrstagung Arbeitskreis Kohlenstoff, 26.04.2016 Meitingen

Markus Hagen, Jens Tübke

Fraunhofer-Institut für Chemische Technologie ICT, Abteilung für Angewandte Elektrochemie (AE)

Fraunhofer ICT – Batterieforschung – Materialforschung (1)

Materialtests: Elektroden, Separator, Elektrolyt, Ableiter – von Knopfzelle bis Demonstratorzelle, Studien

Fraunhofer ICT – Batterieforschung – Messdienstleistungen (2)

Bestimmung der Wärmeleitfähigkeit, der Wärmekapazität, des internen Widerstands, der Kapazität etc.

Fraunhofer ICT – Batterieforschung – Sicherheitstests (3)

Sicherheitstests nach IEC Standard von Batteriezelle bis Modul inkl. zeitaufgelöster Gasanalytik

Übersicht

Stand der Technik

Systeme bzw. Anoden der nächsten Generation

- Lithiummetall
- Siliziumanoden
- Alkalimetall-Schwefel / Kohlenstoff-Schwefel Systeme

Zusammenfassung

Stand der Technik - Panasonic NCR18650B

Spezifikationsen Panasonic NCR18650B		
Nominelle Kapazität (25 °C):	ca. 3250 mAh	
Nominelle Spannung:	3.6 V	
Gewicht:	47.5 g	
Gravimetrische Energiedichte:	ca. 243 Wh/kg	
Gravimetrische Energiedichte nach 500 Zyklen:	ca. 227 Wh/kg	
Volumetrische Energiedichte:	ca. 676 Wh/l	

18650 Zelle – relative Materialverteilung

18650 Zelle – absolute Materialverteilung

- Verminderung der Masse Passivmaterialien
- Erhöhung der Masse Aktivmaterialien
- Erhöhung Masse der Zelle
- Erhöhung von Zellkapazität und -energie

Kann die Spezifische Energiedichte weiter mit 6% pro Jahr steigen?

vermutlich nicht ...

Nächste Entwicklungsschritte:

Separator: $9 \mu m \rightarrow 7 \mu m \rightarrow 5 \mu m$ Al Ableiter: $15 \mu m \rightarrow 10 \mu m$ Cu Ableiter: $10 \mu m \rightarrow 6 \mu m$ Grav. E.: <300 Wh/kg; Vol. E.: <900Wh/l (18650 Zellen)

Energiedichten verschiedener elektrochemischer Speichersysteme (auf Zellebene)

Grav. Cell Energy Density / Wh kg⁻¹

Lithiummetall

Lithiummetall (1)

- Reversible Einlagerung in ein Wirtsgitter Volumenarbeit ~10%
- Hohe Zyklenzahlen >1000
- Weitgehend stabile SEI auf Anode (Graphit)
- Limitierte Kapazität (Graphit: ~330 mAh/g)

- Kompletter Umbau der Lithiumanode (Auflösen und Neuabscheidung)
- Limitierte Zyklenzahl ~100-300
- SEI muss ständig "repariert" werden
 - Elektrolytdekomposition (Zelle trocknet aus)
 - Lithiumüberschuss notwendig
 - Hohe Kapazität (Lithium: ~3000 mAh/g)

Lithiummetall (2)

Entstehung "totes Lithium"

Laden und Entladen einer Li-S Zelle

- SEI und Elektroden nicht perfekt homogen → bevorzugte lokale Abscheidung von Lithium
- Das Lithium wird nicht plan sondern "schwammig", "porös" oder "stengelförmig" abgeschieden
 - Es entsteht eine neue, frische Lithiumoberfläche \rightarrow Verbrauch von Elektrolyt und Bildung einer neuen SEI
 - Stengelförmiges Lithium kann abbrechen \rightarrow Kontaktverlust \rightarrow elektrochemisch "totes Lithium"
- Lösungsansätze: Solid State Zellen, Nischenmärkte (geringe Zyklenzahl ist i.O.), Mitteltemperaturzellen

J. Yamaki, S. Tobishima, Handbook of Battery Materials" Wiley-VCH Verlag GmbH, Weinheim (1999) 339 ff.

Siliziumanoden (Si)

Siliziumanoden (2) – Typen/Möglichkeiten

Han et al., Energy Environ. Sci., 2012, 5, 9014

Si-Pastenelektrode

- 10-30% Si (+Graphit, +Binder, +Leitruß)
- Normale Dicke (80-120 µm) → moderate Steigerung der mögliche grav. + vol. Energiedichte
- Fertigung: Slurry + Standardcoater

Fazit: Geringe Verbesserung bei moderat höherem Preis und geringerer Zyklenzahl (<500)

Dünnschicht Si Anode

- 100% Si (kein Binder, kein Leitruß)
- Dünne Elektroden (~1-10 µm) → hohe mögliche grav. + vol. Energiedichte
- Fertigung: PVD, CVD

Fazit: Gute Verbesserung bei höheren Kosten und geringerer Zyklenzahl (200-300)

Research Letters (2014) **9**:417

Strukturierte, geordnete Si Anode

- 100% Si (kein Binder, kein Leitruß)
- Dünne Elektroden (~20-60 µm) → hohe mögliche grav. + vol. Energiedichte
- Fertigung: CVD, Ätzen

Fazit: Gute Verbesserung bei extrem höheren Preis und geringerer Zyklenzahl (~1000)

ICT

🗾 Fraunhofer 🗾 Fraunhofer

FEP

Siliziumanoden (3) – Mechanische Spannungen

Si Dünnschichtanode nach ca. 20 Zyklen

- Canyonartige Struktur der Si Anode
- Cu Ableiter zerfetzt ("Spaghettisieb")
- Makroskopische Abbildung in Pouch Folie → Pouch Zelle ändert ihre Form

Si Dünnschichtanode nach ca. 50 Zyklen

Abriss vom Ableiter (Kontaktverlust)

Siliziumanoden (4) – Ergebnisse Dünnschichtanoden

- Sehr hohe Flächenkapazitäten bis 8 mAh/cm² (Stand der Technik: ca. 4 mAh/cm²)
- Die theoretische Kapazität wird in den initialen Zyklen realisiert
- Abfall der Kapazität vermutlich primär durch mech. Spannungen

Alkalimetall-Schwefel Kohlenstoff-Schwefel Systeme

Das System Li-S (1) – Stand der Technik

Electrical Specifications:

Nominal Voltage:	2.15V			
Maximum Charge Voltage:	2.5V			
Minimum Voltage on Discharge: Nominal Capacity @ 25°C: Maximum continuous discharge rate:	1.7V 2.5 Ah @ C/5 2C			
			Maximum charge rate:	C/5
			Specific Energy:	350 Wh/kg
Energy Density:	320 Wh/I			
Cell Impedance:	25 mΩ			

Mechanical Specifications:

Configuration:	Prismatic	
Length:	55 mm (top flanged folded)	
Width:	37 mm	
Thickness:	11.5 mm	
Weight:	~16 g	

Environmental Specifications:

Discharge Temperature:	-20°C to +45°C
Charge Temperature:	-20°C to +45°C
Storage Temperature:	-40°C to +50°C

Lithium Sulfur Discharge Voltage Profile

Typical applications include:

- Unmanned Vehicle Systems
- Weight sensitive electronic applications
- Military communication systems
- Sensors

- Hohe gravimetrische Energiedichte
- Niedrige volumetrische Energiedichte
- Interessanter
 Temperaturbereich

Quelle: Sion Power

Das System Li-S (2) – Viele Optionen

Die Wahl der Anode bestimmt die mögliche Anwendung!

Das System Li-S (3) – Vergleich Na-S – Hard Carbon Anoden

- Sehr hohe Zyklenzahlen mit Hard Carbon Anode realisierbar
- Energiedichten moderat (100-200 Wh/kg)
- Die SEI hat großen Einfluss auf die erreichbare Zyklenzahl eine Vorbehandlung der Anode in Carbonatelektrolyt + FEC steigert die Zyklenzahl erheblich

Preisentwicklung Energiespeicher (4)

Preisentwicklung Material

Lithium: 5-6 k\$/t (2013, signumBox) Natrium: 2 k\$/t (2016, Alibaba)

Stand: 16.02.2016, https://www.metalprices.com

Kosten in Abhängigkeit der Elektrodenkapazität

Speicherkosten in \$/kWh sinken mit höherer Elektrodenkapazität

(Materialpreise aus W.F. Howard, R.M. Spotnitz, Journal of Power Sources 165 (2007) 887-891 + Expertenbefragung).

Zusammenfassung (1)

- Die Energiedichte wurde in den letzten Jahren 20 Jahren durch Senkung des Passivgewichts, Steigerung des Aktivgewichts und bessere Aktivmaterialien verdoppelt.
- Insbesondere die Speicherkosten müssen deutlich sinken und stabil bleiben.

Zusammenfassung (2)

- Zellen mit Lithiummetall oder Siliziumanoden werden vermutlich immer geringere Zyklenzahlen aufweisen als Kohlenstoffanoden.
- Schwefelkathoden kombiniert mit Kohlenstoffanoden könnten eine sehr interessante Option für kostengünstige stationäre Speicher werden!

Batterieforschung - Kon	taktinformationen			
Abteilungsleitung Angewar	ndte Elektrochemie:			
	Prof. Jens Tübke	Phone: +49 721 4640 343		
Mail: <u>Jens.Tuebke@ict.fraunhofer.de</u>				
Course a statistica a Datta sia.	Dr. Markus Hanne			
Gruppenieitung Batterie:	Dr. Markus Hagen	Phone: +49 /21 4640 /16		
Mail: <u>Markus.Hagen@ict.fraunl</u>	<u>nofer.de</u>			
Materialforschung:	Thomas Berger	Phone: +49 721 4640 319		
	Dr. Michael Holzapfel	Phone: +49 721 4640 508		
Mail: <u>Thomas.Berger@ict.fraun</u>	<u>hofer.de</u>			
Mail: <u>Michael.Holzapfel@ict.fra</u>	aunhofer.de			
Sicherheitstests:	Matthias Krampfert	Phone: +49 721 4640 899		
Mail: <u>Matthias.Krampfert@ict.fraunhofer.de</u>				
Analvtik:	Dr. Michael Abert	Phone: +49 721 4640 658		
Mail: Michael Abert@ict fraunhofer de				
Man. Michael.Aber telet.Hadin				

SEM: CNT-Bündel auf einer Schwefelkathode

