

INSTITUT FÜR KERAMIK, GLAS- UND BAUSTOFFTECHNIK

Korrosionsvorgänge in MgO-C-Steinen mit MA-Spinell-Körnungen für Stahlbehandlungspfannen

P. Gehre^{*}, C.G. Aneziris, C. Wöhrmeyer, C. Parr

24. April 2018, 3. Freiberger-Feuerfest-Symposium 2018, Freiberg.

TU Bergakademie Freiberg | Institut für Keramik, Glas- und Baustofftechnik | Professur für Keramik | Agricolastraße 17, 09599 Freiberg | 03731 / 39-2709 | www.tu-freiberg.de | Dr. Patrick Gehre | patrick.gehre@ikgb.tu-freiberg.de | FF-Symposium 2018 | 24.04.2018

Motivation / Stand der Technik

2 Versuchsdurchführung und Ergebnisse

Probenherstellung

Korrosionstest im Labor

Industrieeinsatz

Korrosionsmechanismen

Motivation / Stand der Technik

Motivation

Pfannendurchbruch in der Gießwalzanlage bei Thyssen-Krupp / Bruckhausen am 12.08.2017. Quelle: waz.de

Motivation

- MgO-C: sehr gute TWB und Beständigkeit gegenüber Schlacke, hohe thermische Leitfähigkeit, geringe thermische Ausdehnung, hohe Zähigkeit Aber: geringe Oxidationsbeständigkeit und geringe Festigkeit
- Stetig steigende Anforderungen (längere Einsatzzeiten, Überschreiten der Einsatztemperaturen)
- ⇒ u.a. verbesserte Korrosionsbeständigkeit gefordert
- Al_2O_3 -MgO-C (AMC)-Steinen \rightarrow höhere Korrosionsbeständigkeit (Behandlungspfanne)
- MgO-MgAl₂O₄-C \rightarrow höhere Korrosionsbeständigkeit (Konverter)

Motivation / Stand der Technik

Korrosionsmechanismen

MgO-C*

- a) FeO + C \rightarrow CO + Fe
- b) Schlackeangriff + Korrosion des MgO

c) MgO + C
$$\rightarrow$$
 Mg_(g), Mg_(g) + O \rightarrow

MgO dichte sekundäre Schicht

MgO-Al₂O₃-C**

- a) Spinellbildung (Senkung der Schlackeinfiltration)
- b) Verringerung der Oxidation von C
- c) Wechselwirkung von Al₂O₃ mit

Schlacke \rightarrow Erhöhung Viskosität

Untersuchung

Einfluss von kommerziellen Spinell-Rohstoffen (AR78***, CMA 72****) auf die

Korrosionsbeständigkeit von MgO-MgAl₂O₄-C

- * WE Lee, S Zhang. Melt corrosion of oxide and oxide-carbon refractories. Int Mater Rev 44 (1999), pp. 77-104
- ** S Ghasemi-Kahrizsangi et al. Effect of micro and nano-Al₂O₃ addition on the microstructure and properties of MgO-C refractory ceramic composite. Mater Chem Phys 189 (2017), pp. 230-236
- *** AR78, Almatis GmbH, Frankfurt, Deutschland
- **** CMA 72, Imerys Aluminates, Frankreich

Motivation / Stand der Technik

2 Versuchsdurchführung und Ergebnisse

Probenherstellung

Korrosionstest im Stahlgusssimulator

Industrieeinsatz

Korrosionsmechanismen

Zusammensetzung

Rohstoff (Gew.%)	MgO-C	СМА-К	MA-G
MgO	97,8	92,8	92,8
CMA 72 Klinker	-	5,0	-
AR78 1-3	-	-	5,0
Graphit	1,1	1,1	1,1
Ruß	1,1	1,1	1,1
Pulverharz	1,5	1,5	1,5
Flüssigharz	1,5	1,5	1,5
Hexamethylen- tetramin	0,3	0,3	0,3

- MgO: "2-4", "1-2", "0-1" und "Mehl"
- CMA 72 Klinker ... < 2 mm
- AR78 1-3 ... < 2 mm

Probenherstellung

Versuchsdurchführung

Korrosionstest im Stahlgusssimulator

Versuchsdurchführung

Korrosionstest im Stahlgusssimulator

1

2

Proben-Vorrichtung für Korrosionstest

Chem. Zusammensetzung der synthetischen Schlacke

Bestandteil	AI_2O_3	CaO	SiO ₂	MgO	Fe_2O_3	TiO ₂
Anteil (Gew%)	42,4	40,0	6,0	8,3	0,1	0,9

Ausbildung der Schlackeschicht auf im Tiegel erschmolzenem Stahl¹⁰ (beispielhaft)

Ergebnisse – Korrosionstests im Stahlgusssimulator

Lichtmikroskopie– MgO-C

- Zackige Schlacke/FF-Grenzfläche
- Infiltrationstiefe nicht ermittelbar, da ursprünglicher Probenrand nicht zu erkennen ist
- Abstand höchster zu niedrigster Punkt: 1,2 mm

Ergebnisse – Korrosionstests im Stahlgusssimulator

Lichtmikroskopie– MgO-C + 5 Gew.% AR78

- Schlacke/FF-Grenzfläche nicht so stark gezackt wie Probe MgO-C
- Welliger Charakter der Grenzfläche (Auswaschen grober und feiner Partikel?)
- Infiltrationstiefe: **0,8 mm** (nicht eindeutig zu bestimmen)

Ergebnisse – Korrosionstests im Stahlgusssimulator

Lichtmikroskopie– MgO-C + 5 Gew.% CMA 72

- Klarer Übergang von FF-Material zu Schlacke
- Geringe Wechselwirkung des FF-Materials mit Schlacke
- Infiltrationstiefe: **0,1 0,2 mm**

Industrieeinsatz

1

Stahlwerk Brasilien (Pagliosa et al.*)

- 205 t Stahlpfanne
- Feldtest im Pfannenrand
- 10 Chargen ; Al, Si und Al/Si-beruhigt
- ⇒ Ausbildung einer Schutzschicht beobachtet

* C Pagliosa, PV Souza, N Hama, C Wöhrmeyer, C Zetterström, PC Evangelista. Improvement of MAC bricks for steel ladle with CaO-MgO-Al₂O₃ aggregate: A new perspective for cement application. Proceeding 0046, UNITECR 2017-15th Biennial Worldwide Congress, 2017, Santiago, Chile.

Industrieeinsatz

2 Stahlwerk China

- Industriell gefertigte Steine (Chi Yuan Industrial Co.)
- 130 t Stahlpfanne
- Ausmauerung des Pfannenrands
- 6 Monate Einsatz

Verbindung	Gehalt (Gew%)
Al ₂ O ₃	17,5
CaO	52,2
SiO ₂	14,0
MgO	9,3
FeO / Fe	1,4
MnO	0,3
S	0,72

Industrieeinsatz – Stahlwerk CN

- 120 mm Restlänge
- 3 Zonen: a) Schlackeschutzschicht (max. 3 mm), b) oxidierte Zone (max. 3,2 mm) mit Metalleinschlüssen (bis 500 μm), c) originaler Stein

REM /EDX - Schlackezone

- Umschließt MgO-Körner
- Belit und Gelenit als Hauptphase
- Brownmillerit kristallisiert aus

⇒ Ausbildung einer Schlackeschutzschicht durch Anreicherung mit CaO und Fe aus Schlacke und Stahl

REM /EDX - Oxidationszone

- MgO-Körner mit Schlacke an den Korngrenzen
- Metall. Fe
- Kein CMA 72

REM /EDX – Auflöseprozess MgO

Sintermagnesia

- Al₂O₃, SiO₂ und CaO infiltrieren poröse Sintermagnesia
 ⇒ Reaktionsverbindung liegt im Spinell-Stabilitätsfeld des Al₂O₃-CaO-MgO-SiO₂-Systems
- Auflösung wird stark verlangsamt

REM /EDX – Auflöseprozess MgO

Schmelzmagnesia

- Infiltration durch Fe von außen nach innen
- Ausbildung einer Fe-reichen Schicht (10 Gew.% Fe)
- Porenbildung

REM /EDX – Auflöseprozess MgO

Al₂O₃-CaO-MgO-SiO₂-Verbindung

* EF Osborn, RC DeVries, KH Gee, HM Kraner. Optimum composition of blast furnace slag as deduced from liquidus data for quarternary system CaO-MgO-Al₂O₃-SiO₂. Trans. AIME, J. Metals 6 (1954), 33-45

REM /EDX – Originaler Stein

- MgO wird von CaO und SiO₂ angegriffen
- Forsterit Mg₂SiO₄ (M₂S) und Monticellit CaMgSiO₄ (CMS) entstehen
- CaS nachweisbar

REM /EDX – Originaler Stein

- CMA wird von Schlacke angegriffen
- andere Reaktionsverbindung als bei MgO \rightarrow schnellere Auflösung
- Aber: Auflösung von CMA führt zur Ausbildung der stabilen Schlackeschutzschicht

Motivation / Stand der Technik

Versuchsdurchführung und Ergebnisse Probenherstellung Korrosionstest im Labor Industrieeinsatz

Korrosionsmechanismen

Zusammenfassung

- Stahlgusssimulator: MgO-C + CMA 72 höchste Korrosionsbeständigkeit
- Stahlpfanne: mit CMA 72 Ausbildung einer Schlackeschutzschicht

Mechanismus:

- Oxidation von C
- Auflösung von MgO (M₂S, CMS) und CMA 72 durch Schlacke
- Reaktionsverbindung im Spinellstabilitätsfeld
- Metall. Fe in Oxidationszone
- Fe, CaO (und SiO₂) gebunden in Schlackeschutzschicht

► MgO-CMA-C-Stein reagiert mit infiltrierender Schlacke → Beeinflussen der Schlackechemie → stark verringerte Korrosion bzw. stabile Schlackeschicht

"Korrosion von MgO-C mit MA-Spinell-Körnungen"

Vielen Dank für Ihre Aufmerksamkeit!

TU Bergakademie Freiberg | Institut für Keramik, Glas- und Baustofftechnik | Professur für Keramik | Agricolastraße 17, 09599 Freiberg | 03731 / 39-2709 | www.tu-freiberg.de | Dr. Patrick Gehre | patrick.gehre@ikgb.tu-freiberg.de | FF-Symposium 2018 | 24.04.2018