

Einfluss veränderter Betriebsbedingungen auf das Verschleißverhalten feuerfester Werkstoffe und die Standzeit von kommunalen Müllverbrennungsanlagen

Thorsten Tonnesen, Rainer Telle

Institut für Gesteinshüttenkunde der RWTH Aachen

Feuerfestsymposium, Freiberg, 24. April 2018

Einleitung – Anlagentechnik – Motivation

Einfluss-Parameter

- Beständigkeit von **oxidischen Werkstoffen und Bindephasen** gegenüber korrosiven Komponenten der Brennraumatmosphäre
- Einfluss von feuerfesten SiC-Rohstoffe und deren Verunreinigungen
- Oxidationsmechanismen von nicht oxidischen Bindephasen
- Verschlackungsvorgänge von nicht oxidischen Bindephasen
- Korrosion des Fugenmaterials / Mörtels

Korrelationen von Mikrostruktur und Eigenschaftsänderung der Werkstoffe

Schlussfolgerungen für den Anlagenbetrieb

Horizontalrost

Abb. Rückschubrost

Abb. Walzenrost

Rückschubrost

Abb. Kessel Taillensteine, Walzenrost

Einleitung, Motivation

Einleitung, Motivation

Eigenschaftsänderungen: Bewertung, Analyse

Eing. Nr. 44 nach Oxidatio

10 cm

11111111

Nitridgebundenes SiC nach 500 h Oxidationstest bei 900°C <u>Korrelationen</u>

Thermodyn. Beständigkeit

↔ Anlagenbetrieb

mulum

milim

↔ Veränderung der Mikrostruktur,
Wegsamkeit von korrosiver Spezies,
Rissbildungen

↔ Veränderung von HT-Eigenschaften,
Labor Experimente
4465/2

LVS NW

infin

milin

Oxidische Werkstoffe und Bindephasen, Schlackenangriff

Eigenschaftsveränderung

Hochtonerdehaltige Steine nach Einsatz im ungekühlten Mauerwerk der Einlaufzone

Bezeichnung	Mullitgebundener Hochtonerdehaltiger	Bezeichnung	Mineralphase		Intensität
	Stein	Anlieferung	Korund	Al ₂ O ₂	Vs
Oxid	[wt%]	J	Mullit	3ALO, 2SiO,	S
Al ₂ O ₃	85,22				
	11,64		Zirkon	ZrSiO ₄	W-Vw
Fe ₂ O ₃	0,24		Carnegieit	NaAlSiO ₄	Т
	0,21		5	4	
CaO	0,01				
MgO	0,11	Feuerseite	Anorthit	CaAl ₂ Si ₂ O ₈	S
	0,15				
Ma ₂ O	0,14		Koruna	AI_2O_3	VS
	<<		Mullit	$3AI_2O_32SiO_2$	М
	1 28		Hedenbergit		т
7 ₂ 0 ₅	1,20		riedenbergit	$Car e Si_2 O_6$	
2102	1,00				
		Kalte Seite	Korund	AI_2O_3	Vs
			Mullit	$3AI_2O_32SiO_2$	S
			Zirkon	ZrSiO ₄	W
			Carnegieit	NaAlSiO ₄	Vw-T
			Baddeleyit	ZrO ₂	Т

Oxidische Werkstoffe und Bindephasen, Schlackenangriff

Eigenschaftsveränderung

Hochtonerdehaltige Steine nach Einsatz im ungekühlten Mauerwerk der Einlaufzone

Feuerseite: Lösung der Matrix Ausscheidung von Hedenbergit [1]und Anorthit [2] Schlackeninfiltration bis in tiefe Steinbereiche Starke Verdichtung des Gefüges an FS

Einfluss des Rohstoffs

Abb. Verschleißbild Taillensteine

Oxidationsverschleiß durch Schlackenangriff

Nitridgebundenes SiC nach Einsatz, Wandbereich mit Schlackenansatz

Oxidation der SiC Körner Direkte Lösung in der Schlacke Auflösung der Nitridbindung

Oxidationsverschleiß durch Schlackenangriff

Nitridgebundenes SiC nach Einsatz, Wandbereich mit Schlackenansatz

Unterschiedliche Ausscheidungen in der Schlacke: CS und alkalireiche Silikate Nitridbindung in direkt angrenzendem Bereich intakt: Direkter Lösungsprozess

Änderung des Brennstoffes, Korrosion durch veränderte Schlacken

	Waste incineration	Biomass
Oxide	[wt%]	[wt%]
SiO ₂	38,9	30,5
AI_2O_3	16,3	6,1
Fe ₂ O ₃	4,1	2,4
TiO ₂	3,3	0,2
CaO	29,7	38,4
MgO	2,4	5,6
K ₂ O	0,4	9,3
Na ₂ O	1,3	0,9
MnO	0,1	3,1
Cr ₂ O ₃	0,1	0
$P_{2}O_{5}$	1,5	2,7
BaO	0,8	0,5
SO3	0	0,1
SrO	0,1	0,2
CuO	0,1	0
Sb2O3	0,3	0
ZnO	0,6	0

Schlackenbildung:

- Melilit [MK Bildung aus Gehlenit (C₂AS) und Akermanit (C₂MS₂)]
- Anorthite CAS₂

Nitridgebundenes SiC Grenzfläche Schlacke/Bindephase Direkte Lösung der Matrix Keine Grenzphasen

Änderung des Brennstoffes, Korrosion durch veränderte Schlacken

Veränderung der Schlackenzusammensetzung: SiC in Kontakt mit Biomasse-Schlacken (Tiegeltest)

Änderung des Brennstoffes/Bindephase, Korrosion durch veränderte Schlacken

Schlackenkorrosion von SiC-Feuerbetonen mit Biomasse-Schlacke

Weiterer Verschleiß-Mechanismus: Oxidation der SiC Körner in der Zementbindematrix Ausscheidung von Phasen des Systems CaO-Al₂O₃-SiO₂

Korrosion: Gasphase

Korrosion: Gasphase

Gleichgewichtsberechnung von 1 Mol SiC im Boudouard GG: Partialdrücke

Einfluss der Mikrostruktur

28,7% N 31,5% O 39,8% Si

10,2% O 33,8% Si 56,0% C

REM Aufnahme: Nitridgebundenes SiC nach 500 h Oxidationstest bei 900°C, Material C-1 (im Kessel 56.000 h Betriebsstunden)

Einfluss der Mikrostruktur

REM Aufnahme: Nitridgebundenes SiC nach 500 h Oxidationstest bei 900°C, Material C-2 (im Kessel <20.000 h Betriebsstunden)

Korrosionsuntersuchungen an SiC Mörteln

- Materialeigenschaften
- Rohdichte nach 1000°C: 2,16 g/cm³
- Offene Porosität nach 1000°C: 25,8%
- Phasenbestand:

 α -SiC (Hauptphase) β -SiC, Al-Hydrogenphosphat (Nebenphasen) Quarz, Kaolonit (Spuren)

Korrosionstests

Salzmischung KCI : ZnCl₂ – 1:1 Temperatur: 350°C Dauer: 520 h

Gasphasen-Korrosion: Mörtel

FF-Mörtel, 400°C getempert, nach Salz-Auslagerungsversuch

0,5% AI 0,5% Si 48% CI 22% K 17,5% Zn 11,5% O

Mörtel 4% AI 17,5% Si 4% P 15% CI 6,5% K 0,3% V 6,6% Zn 45% O

Gasphasen-Korrosion: Mörtel

FF-Mörtel, 1000°C getempert, nach Salz-Auslagerungsversuch

Salz gefüllte Makropore, Wegsamkeit kondensierter Phase über die Porosität

Schlussfolgerungen

Reaktionen nach Schlackenkontakt:

- Oxidische Bindephase: Hohe Löslichkeit in der Schlacke, Anteil der Mullit-Bindephase stark abnehmend
- Verdichtung durch schmelzflüssige Schlackenbildung verändert thermisches Dehnungsverhaltung
- Nitridbindung zeigt direktes Lösungsverhalten im Schlackenkontakt
- Nitridbindung: Oxinitridbildung (SiC) und Si-O-N-Matrix erhöhen die Beständigkeit um ein Vielfaches im Hinblick auf Oxidation
- Veränderte Schlackenzusammensetzung (fuel mismatch) führt zu unterschiedlichen Phasenbildung: Doch die Löslichkeit bleibt hoch und direkt

Komplexes Korrosionsverhalten:

- Oxidation des SiC \leftrightarrow Volumenzunahme $\leftrightarrow~$ Rissbildungen/Abplatzungen
- Oxidation des SiC \leftrightarrow thermal expansion mismatch
- Oxidation des SiC \leftrightarrow Glasphasen-/Schlackenbildung \leftrightarrow Lösung der Matrix
- Fuel mismatch: Hohe Alkali-, Fe_2O_3 und P_2O_5 ,-Anteile \leftrightarrow unterschiedliche Reaktionen
- Rissbildungen durch kondensierte Salze (Erhöhung der Wegsamkeit)

Vielen Dank für Ihre Aufmerksamkeit! tonnesen@ghi.rwth-aachen.de

