

Korrosionsverhalten von Oxid- und kohlenstoffgebundenen feuerfesten SiC-Gießmassen in Kontakt mit CaO-SiO₂-Schlacken

D. Veres*, R. Tronstad, K.R. Forwald, L. Stephan, B-E. Bock, C.G. Aneziris

TU Bergakademie Freiberg | Institut of Ceramics, Refractories and Composite Materials | Agricolastraße 17. 09599. Freiberg | Telephone: 00493731 / 39-2176 | www.tu-freiberg.de | Vortragender: Dr.-Ing. Dániel Veres | Feuerfest Symposium 27.04.2022

- Motivation
- Experimentelle Durchführung
- Ergebnisse und Diskussion
 - Korrosionsversuche mit Schlacken
 - Einfluss Offenen Porosität und Kohlenstoffgehalt
 - Weitere Einflussfaktoren
 - Bestimmung der Infiltration bei Raumtemperatur
- Zusammenfassung und Ausblick

SiC/SiC-C

Müllverbrennungsanlagen (FF Auskleidung) In Kombination mit Kohlenstoff als Schmelz-Behandlungstiegel für Silizium, Messing, Kupfer, Nickel etc. ^{1,2,5}

- Resistent gegen schlacken und Flussmittel
- Durch Mikrowelle und Induktion beheizbar⁶

Nachteile:

- Herstellung/Bindung (Geometrie/größe)
- Oxidation
- Oxidation von Kohlenstoff-> erhöhte Korrosion

Zielsetzung

Untersuchung der Einfluss der Physikalische Eigenschaften und der Kohlenstoffgehalt auf Korrosionsverhalten Ermittlung der Kapillarsaugfähigkeit bei Raumtemperatur

Physikalische, mechanische und chemische Eigenschaften

• KBF

•

- Porosität
- Porengrößenverteilung
 - Korrosionsbeständigkeit
 - RT Kapillar-Saugversuche (Neuentwicklung)
 - HT Tiegeltest mit CaO-SiO₂ Schlacke (1600 °C)

Zusammensetzung und Eigenschaften der Gießmassen

SiC-

MG

90.00

in wt.-%

Tab.1 Zusammensetzung der Gießmassen

0-3 mm

SiC-

5C-0

95.00

SiC-

10C-0

90.00

CMOR in MPa Carbon black 2.00 3.00 Kohlenstoffe **Graphite AF** 1.00 2.50 15 Carbores® P 2.00 5.50 Alphabond 5.00 Al_2O_3 CL 370 4.00 10 **Fused silica** 7.00 Microsilica SiO₂ 1.00 1.00 5 Köstrosol 730 6.7 **VP 95L** 0.50 0.50 0.50 0 Additive MgO (fine) 0 0 0.30 Beschl. 0 0 6.40 7.00 5.3 Wasser 9.00 SiC-5C-0 SiC-10C-0 SiC-MG 0.28 0.21 0.26 q- value 0.21

SiC-

SiO₂

90.00

Offene Porosität steigt, Festigkeit sinkt mit Erhöhung der Kohlenstoffanteil

Niedrige Porosität und Hocher Festigkeiten bei Oxidgebundene SiC

Bezeichnung

SiC

1600°C

Ar Atmosphere

Tiegel mit 50g Schlacke

5h

٠

•

٠

•

Korrosionsversuch:

CaO-SiO₂

Tab.2 Viskosität der schlacke

		Viskosität (Pa·s) [
		1550 °C	1600 °C	
Slag	CaO-reich	0,18	0,14	

Korrosion von oxidgebundenen SiC-Tiegeln

	Tab.3 ED/	AX A naty	se SiC-	-Si	O ₂ Probe	nach inf	iltration
ALL STREET		spot 1			spo		
1	Element	Wt %	At %		Wt %	At %	
	ОК	24.19	37.60		49.46	64.76	
and a state of the	Si K	58.03	51.38		39.57	29.51	
1 here	Ca K	17.77	11.02		10.97	05.73	
	and and				-		
	30 mm					000jum	

SiC-SiO₂

Tab.4 EDAX Analyse SiC-MG Probe nach infiltration

30 mm

	spo	ot 1	sp	spot 2		spot 3		sp	ot 4
Element	Wt %	At %	Wt %	At %		Wt %	At %	Wt %	At %
AI K	1.72	1.44	4.32	04.00		0.84	0.75	9.69	7.22
OK	43.28	61.12	19.13	29.93		34.81	52.21	52.12	65.46
Si K	26.74	21.51	68.44	61.00		33.28	28.44	38.18	27.32
Ca K	28.26	15.93	8.12	05.07		31.07	18.60	0	0
	the second		100	1.0			20		

SiC-MG

REM Aufnahme SiC-SiO₂ nach Korrosion

REM Aufnahme SiC-MG nach Korrosion

Korrosion von kohlenstoffgebundenen SiC-Tiegeln: Einfluss von C-Gehalt und Verkokungstemperatur

Erhöhung des C-Gehalts und der Verkokungstemperatur:

- Höhere Festigkeiten. Leichter Erhöhung der Offenen Porosität
- Erhöhung der Oxidationsbeständigkeit
- Senkung der Infiltrationstiefe

Korrosionstest mit CaO/SiO₂-Schlacke Einfluss der offenen Porosität und des Graphit-Gehalts

4600

4100

3600

3100

2600

2100

1600

Infiltration depth

/ µm

1443 °C

1443 °C

- Infiltration unterschiedlichen Proben mit 10 Gew.% Restkohlenstoff zeigt nur bedingt eine Abhängigkeit
- Erhöhung der Graphit Gehalt zeigt unervartet hohe Infiltration

- Kohlenstoffgehalt ٠
- Verkokungstemperatur ٠
- Porosität •
- Viskosität ٠
- Porengrößenverteilung (durch Körnungsaufbau) ٠
- Kapillarer Saugdruck/ Sauggeschwindigkeit •

90°

0

Solid Substrate

 180°

-1

Contact angle: 0°

θ

 $\cos\theta$ 1

Tab.5 Physikalische Eigenschaften von SiC-10C Proben mit geänderten q Wert

Batch name	SiC-10C-0	SiC-10C-0,35	SiC-10C-0,39	SiC-10C-0,45
q	0,21	0,35	0,39	0,45
OP (%)	23,54 (± 0,57)	21,89 (± 0,31)	21,41 (± 0,44)	22,35 (± 0,40)
OP MIP (%)	21,57	19,60	19,57	20,18
Median pore diameter (nm)	651,94	1183,02	1250,90	2701,20
Median pore radius (nm)	326	591	625	1350

- Kann die Kapillar-Saugfähigkeit bei Raumtemperatur bestimmt werden?
- Gibt es Korrelationen zwischen der Kapillarsaugfähigkeit bei Raumtemperatur und der Hochtemperaturinfiltration?

Kapillarsaugfähigkeit ⁶ Entwicklung einer Messstation

- Proben 10x25x30 mm³ von gegossenen Prismen (ohne Gießhaut)
- Testflüssigkeiten: Toluol und Hydrauliköle
- Viskositätsabhängige Messzeiten 1,5 6 Stunden
- Bestimmung der zeitabhängige Massezunahme per mm²

	Toluol	HLP 46
Dichte (g/cm ³)	0,867	0,879
Viskosität 20 °C (mPas)	3-4	110-120

mm ⁻²	1.5	SiC-10C-0-Gr SiC-10C-0.26-DF SiC-10C-0 SiC-10C-0.45 SiC-10C-0.35		HLP 46		OP	Mass increase (t ₁ =5000 s)	Suction rate above the threshold of 5000 s	Median pore radius
×	1.0	SiC-10C-0.39				(%)	mg · mm ⁻²	mg · mm ⁻² · s ⁻¹	nm
m/			1 mar		Designation			(.10-4)	
ase		a service and	···· · · · · · · · · · · · · · · · · ·		SiC-10C-0-Gr	25.36	0.662	0.39	223.8
ICLE	0.5				SiC-10C-0.26 DF	28.02	0.569	0.29	1167.4
ss ir	0.5	and the second sec			SiC-10C-0	23.54	0.473	0.29	325.9
mas		All in the second			SiC-10C-0.45	22.35	0.447	0.15	1350.6
_		la real			SiC-10C-0.35	21.89	0.348	0.18	591.5
	0.0	1			SiC-10C-0.39	21.41	0.340	0.20	625.4
		0 5000	10000	15000 20000	Tab.6 Ergebni	isse der l	Kapillarsaugver	suche mit SiC	-10C Proben

time / s

Kapillarsaugfähigkeit Kapillarsaugfähigkeit Kapillarsaugfähigkeit Kapillarsaugfähigkeit Kapillarsaugfähigkeit

time / s

Tab.7 Infiltrationstiefe und Mittlere Porenraduis der SiC-10C Proben

Designation	Infiltration depth	SD	Median pore radius
	μm	nm	
SiC-10C-0-Gr	4478.67	279.56	223.8
SiC-10C-0	1829.44	151.11	325.9
SiC-10C-0.35	1801.11	113.56	59 1 .5
SiC-10C-0.39	1687.89	129.51	625.4
SiC-10C-0.26-DF	2346.15	134.49	1167.4
SiC-10C-0.45	2149.50	53.18	1350.6

- Oxid- und Kohlenstoffgebundene SiC-Gießmassen mit bis zu 10 Ma-% Rest-Kohlenstoff-Gehalt wurden entwickelt
- Erhöhung der Verkokungstemperatur sowie Erhöhung des Kohlenstoffanteils senken die Infiltration
- Kapillarsaugfähigkeit scheint dominantere Einflussgröße zu sein (benetzendes Schlackenverhalten) →
 Porengrößenverteilung ist entscheidend und nicht die offene Porosität
- Kapillarsaugverhalten bei RT konnte mithilfe einer Versuchsanlage bestimmt werden → Darstellung des Einflusses von Viskosität und offener Porosität
- Nach der Ansaugphase die von der offenen Porosität abhängig ist, stellt sich eine konstante Sauggeschwindigkeit ein die durch die mittlere Porengröße bestimmt wird
- Ergebnisse von RT-Saugversuchen können Aufschluss auf HT-Infiltration geben

- Übertragbarkeit auf unterschiedliche Feuerfestmaterialien
- Kapillare Saugversuche bis zur Masse-Konstanz

Weiterentwicklung der Versuchsanlage:

- Einhausung
- Optische Auswertung von Saugversuchen für bessere Vergleichbarkeit
- Simulation des Infiltrationsverhaltens bei ansteigender Temperatur (Viskositätsänderung, z.B, Hydrauliköle 0 – 100 °C)

- Y. S. Bagaiskov, G. P. Krukhmaleva, L. D. Kulakova, "Clay-graphite refractory crucibles containing variable amounts of silicon carbide." Refract. 1991 321. 32, 87–89 (1991).
- [2] C. Allaire, "New SiC-Graphite castable for molten metal transfer units." Mater. Soc. Annu. Meet., 641–646 (2009).
- [3] J. E. Funk, D. R. Dinger, "Particle packing VI applications of particle size distribution concepts." Interceram, 350–353 (1994). Schei, A.; Tuset, J.K. K; Tveit, H.: Production of High Silicon Alloys. Trondheim : Tapir Forlag (1998) ISBN 82-519-1317-9
- [4] Ceccaroli, Bruno; Øvrelid, Eivind; Pizzini, Sergio; Binetti, Simona; Stein, Julsrud; Breneman, William C.; MORITA, K.; Buonassisi, Tonio; CECCAROLI,
 B. ; ØVRELID, E. ; PIZZINI, S. (eds.): Solar Silicon Processes Technologies, Challenges and Opportunities (2016) ISBN 9781498742658
- [5] Brückner, Raimund ; Grimm, Daniel ; Kapoor, Jivan: Inductively heated refractories and their applications (1997)
- [6] Njobuenwu, D.O.; Oboho, E.O.; Gumus, R.H.: Determination of contact angle from contact area of liquid droplet spreading on solid substrate.
 In: Leonardo Electronic Journal of Practictices and Technlogies (2007), No. 10, pp. 29–38
- [7] Heo, Seon-Hwa ; Lee, Kyuyong ; Chung, Yongsug: Reactive wetting phenomena of MgO–C refractories in contact with CaO–SiO₂ slag. In: Transactions of Nonferrous Metals Society of China vol. 22, Elsevier (2012), pp. s870–s875

Vielen Dank für Ihre Aufmerksamkeit

tu-freiberg.de

I TU Bergakademie Freiberg bergakademie_freiberg TUBergakademie TUBergakademie

TU BERGAKADEMIE FREIBERG Universitätskommunikation Prüferstr. 2 09599 Freiberg Tel. +49(0)3731 39-2711, -3461 kommunikation@zuv.tu-freiberg.de

