

Korrosion von Zement und Sol-Gel gebundenen Feuerbetonen durch wasserstoffhaltige Atmosphäre

T. Tillmann, T. Leber, T. Tonnesen, J. Gonzalez-Julian Lehrstuhl für Keramik, Institut für Gesteinshüttenkunde, RWTH Aachen

5. Freiberger Feuerfest-Symposium 2024, 22.-24. April 2024

Motivation

- Reduzierung der Treibhausgasemissionen führt zur Umstellung von Prozessen im Sinne der Feuerung als auch Parametern
- Bestrebung in der Eisenherstellung Kohlenstoff durch Wasserstoff zu substituieren
- Veränderte Belastung der verwendeten Auskleidungen durch stark reduzierende Atmosphäre, erhöhte Gasströme einhergehend mit abrasiver Schädigung
- Industriell implementierte Direktreduktionsprozesse können als Ausgangspunkt der weiteren Betrachtung dienen

Schematische Prozessdarstellung von direktreduziertem Eisen mittels Wasserstoff

(Bewertung der Herstellung von Eisenschwamm unter Verwendung von Wasserstoff, https://germany.arcelormittal.com)

Materialien und Versuchsparamter

- Schamotte (2060)
- \rightarrow Gegossener Feuerbeton (LCC)
- \rightarrow Hauptbestandteile Al₂O₃ (51,2 Gew.-%) und SiO₂ (43,7 Gew.-%)
- Hochtonerdehaltiger Beton mit SiC (2061)
- \rightarrow Spritzbeton (LCC)
- \rightarrow Hauptbestandteile Al₂O₃ (78,6 Gew.-%) und SiC (8,5 Gew.-%)
- Mullit $(3Al_2O_3 \cdot 2SiO_2)$
- → Modellsystem aus feinen Korngrößen
- \rightarrow Gebunden mit Sol-Gel
- Anorthit (CaAl₂Si₂O₈)
- → Modellsystem aus feinen Korngrößen
- \rightarrow Gebunden mit Sol-Gel

Temperatur	1100 °C	1100 °C	1500 °C	1500 °C	
Haltezeit	24 h	72 h	24 h	72 h	32 Versuche, mit jeweils 3 Proben
Atmosphäre	Ar/H ₂ Luft	Ar/H ₂ Luft	Ar/H ₂ Luft	Ar/H ₂ Luft	

1 cm

Versuchsaufbau

- 1 = Argon
- 2 = Wasserstoff
- 3 = Gasleitung
- 4 = Flansch
- 5 = Ofenrohr
- 6 = Rotameter
- 7 = Waschflasche
- 8 = Ofensteuerung
- 9 = Ofengehäuse
- 10 = Kühlwasserleitung
- 11 = Wasserkühlung

- Proben sind auf Grund von Sauerstoffleerstellen schwarz verfärbt
- Nur Verlust des Phosphors bei den Versuchen bei 1500 °C
- Keine großen Veränderungen in der chemischen Bilanz
- Massenzuwachs bei der Probe am Gasaustritt (1500 °C/72 h)

- Proben sind auf Grund von Sauerstoffleerstellen schwarz verfärbt
- Keine großen Veränderungen in der chemischen Bilanz
- Verlust des Phosphors bei den Versuchen bei 1500 °C
- Massenzuwachs bei der Probe am Gasaustritt (1500°C/72 h)
- Keine große Veränderung der offenen Porosität bei 1100 °C
- Nachsintereffekte und Einfluss des Wasserstoffs bei 1500 °C zu erkennen

1500 °C/ 72 h (H2/Ar)

1500 °C/ 72 h (H2/Ar) + 1500 °C (Luft)

- Proben sind auf Grund von Sauerstoffleerstellen schwarz verfärbt
- Keine großen Veränderungen in der chemischen Bilanz
- Verlust des Phosphors bei den Versuchen bei 1500 °C
- Massenzuwachs bei der Probe am Gasaustritt (1500°C/72 h)
- Keine große Veränderung der offenen Porosität bei 1100 °C
- Nachsintereffekte und Einfluss des Wasserstoffs bei 1500 °C zu erkennen

Nullprobe (Luft)

1500 °C 72 h (Ar/H₂)

- Bei 1100 °C keine Veränderung des Gefüges
- Bei 1500 °C Bildung einer dichten Schicht an der Oberfläche
- Runde Agglomerate aus Eisen und Phosphor an der Oberfläche
- Bereiche mit erhöhter Siliziumkonzentration

Referenzprobe 1500 °C (Luft)

1500 °C 72 h (Ar/H₂)

- Bei 1100 °C keine Veränderung des Gefüges
- Bei 1500 °C Bildung einer dichten Schicht an der Oberfläche
- Runde Agglomerate aus Eisen und Phosphor an der Oberfläche
- Bereiche mit erhöhter Siliziumkonzentration

EDX-Mapping 1500 °C 72 h

- Deutlich sichtbare Agglomerate aus Eisen an der Oberfläche
- Bereiche mit erhöhter Siliziumkonzentration
- \rightarrow Transport von Silizium aus der Mitte der Probe an die Oberfläche
- \rightarrow Anlagerung von ausreduziertem SiO der anderen Proben

EDX-Mapping 1500 °C 72 h

EDX-Mapping Referenzversuch

- Deutlich sichtbare Agglomerate aus Eisen an der Oberfläche
- Bereiche mit erhöhter Siliziumkonzentration
- \rightarrow Transport von Silizium aus der Mitte der Probe an die Oberfläche
- \rightarrow Anlagerung von ausreduziertem SiO der anderen Proben
- Keine Agglomerate oder erhöhte Siliziumkonzentrationen bei der Referenzprobe

Thermodynamische Berechnung mittels FactSage

Gew%	HV 2.1 (1100 °C/24 h)	HV 2.2 (1100 °C/72 h)	HV 2.3 (1500 °C/24 h)	HV 2.4 (1500°C / 72 h)
Si	7,43	7,76	5,53	5,01
Al	41,83	41,62	43,36	44,87
Fe	0,13	0,08	0,41	0,09
Са	1,30	1,40	1,47	1,21
Ti	1,29	1,19	1,91	1,31
Mg	0,10	0,08	0,00	0,06
K	0,21	0,20	0,12	0,13
Р	0,06	0,03	0,03	0,01
Na	0,07	0,05	0,00	0,01

- Bei 1100 °C keine signifikanten Veränderungen der Chemie/Masse/offene Porosität
- Bei 1500 °C deutlicher Massenverlust
- Probe am Gaseintritt verliert mehr Masse als die Probe am Gasaustritt
- Verlust vor allem an SiC/SiO₂

- Dunkle Verfärbung der Proben
- Bei 1100 °C keine signifikanten Veränderungen der Chemie/Masse/offene Porosität
- Bei 1500 °C deutlicher Massenverlust
- Probe am Gaseintritt verliert mehr Masse als die Probe am Gasaustritt
- Verlust vor allem an SiO₂
- Deutliche Steigerung der offenen Porosität der 1500 °C Proben
- Porositätszunahme am Gaseintritt höher
- Reduzierende Atmosphäre wirkt den Nachsintereffekten entgegen

1500 °C 72 h (Ar/H₂)

Nullprobe (Luft)

- Deutliche Änderung der Porosität
- Angriff der Probenoberfläche
- Bildung von met. Agglomeraten (mehrphasig) aus Eisen, Silizium und Titan
- 2 Hauptreaktionen: $\rightarrow SiC_{(s)} + 2H_{2(g)} \rightarrow Si_{(s)} + CH_{4(g)}$ $\rightarrow SiO_{2(s)} + 2H_{2(g)} \rightarrow 2SiO_{(g)} + H_2O_{(g)}$

EDX-Mapping 1500 °C 24 h

Referenzversuch 1100 °C

- Deutliche Änderung der Porosität
- Angriff der Probenoberfläche
- Bildung von met. Agglomeraten (mehrphasig) aus Eisen, Silizium und Titan
- 2 Hauptreaktionen: $\rightarrow SiC_{(s)} + 2H_{2(g)} \rightarrow Si_{(s)} + CH_{4(g)}$ $\rightarrow SiO_{2(s)} + 2H_{2(g)} \rightarrow 2SiO_{(g)} + H_2O_{(g)}$

Thermodynamische Berechnung mittels FactSage

1500 °C 24 h

- Bildung einer "Membran" im Ofenrohr
- Durchmesser wie Ofenrohr
- Entstehungsort am Übergang Ofen/Umgebung

 \rightarrow Bestandteile müssen aus der Probe reduziert worden sein

1500 °C 72 h

- Bei längerer Haltezeit Verstopfung des Rohres
- \rightarrow Rohrbruch beim Abkühlen

"Membrar	"
----------	---

Gew70	reueneicmstein	Stoplen	Wennua
SiO ₂	0,79	5,06	84,53
Al ₂ O ₃	98,77	94,24	1,65
Fe ₂ O ₃	0,06	0,04	0,16
TiO ₂	0,03	0,05	0,02
MgO	0,00	0,00	3,11
K ₂ O	0,10	0,20	1,59
Na ₂ O	0,13	0,31	2,70
P ₂ O ₅	0,00	0,00	2,12
ZnO	0,00	0,00	3,64
Summe	100	100	100
Glühverlust (1050 °C)	-0,06	-0,30	-17,23
	SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ TiO ₂ MgO K ₂ O Na ₂ O P ₂ O ₅ ZnO Summe Glühverlust (1050 °C)	SiO ₂ 0,79 Al_2O_3 98,77 Fe_2O_3 0,06 TiO_2 0,03 MgO 0,00 K_2O 0,10 Na_2O 0,13 P_2O_5 0,00 Summe 100 Glühverlust -0,06	SiO2 0,79 5,06 Al2O3 98,77 94,24 Fe2O3 0,06 0,04 TiO2 0,03 0,05 MgO 0,00 0,00 K2O 0,10 0,20 Na2O 0,00 0,00 ZnO 0,00 0,00 Glühverlust -0,06 -0,30

Equarlaight

2014 04

- Alle Bestandteile müssen aus der Probe stammen
- Längere Haltezeiten führen beim Abkühlen zum Bruch
- \rightarrow Unterschiedliche Ausdehnungskoeffizienten
- \rightarrow thermische Spannungen

ran

Zusammenfassung und Ausblick

- Zusammenfassung
 - Bei 1100 °C sowohl bei der Schamotte als auch bei dem hochtonerdehaltigen Material wenig bis keine Veränderung
 - Bei 1500 °C minimaler Gewichtsverlust bei der Schamotte aber chemisch gleich trotz der optischen Veränderungen
 - Einfluss der Probenposition erkennbar
 - Bei 1500 °C großer Massenverlust des hochtonerdehaltigen Materials
 - → Veränderung der Porosität
 - → Chemische Veränderung
 - \rightarrow Überführung von Elementen wie Si, Al, Alkalien oder Mg in die Gasphase
 - \rightarrow Abgedampftes Material könnte im industriellen Betrieb zu Problemen führen
 - Ausblick
 - Thermodynamische Berechnungen
 - Untersuchung der Auswirkungen von
 Wasserstoff vorhrennungssetmasnhären auf faus

Wasserstoffverbrennungsatmosphären auf feuerfeste Werkstoffe

Vielen Dank für die Aufmerksamkeit!

