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Outline

 Motivation: Numerical modelling, applied to

refractory masonries

 State of the Art: Determination of Young‘s Modulus

– Dynamic method vs static methods, DIC 

measurements for deflection measurement

 Goals: Use of RUL tests to determine temperature

dependant E static

 Experimental Results: RUL Tests, Stress-Strain

Curves, DIC

 FEM Validation

 Summary & Future Work
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Motivation

 Refractories used wherever (in)direct contact with a 
high temperature process

 Simulations can help lower safety factors for plant 
design  static load cases

 Accurate material data needed for simulations
 Thermal properties
 Creep behavior
 Elastic-plastic behavior

 Resonance Frequency Damping Analysis (RFDA) 
often used for temperature-dependent Young‘s 
Modulus Edynamic

 How to determine temperature-dependent Estatic?
 New method proposed, utilizing Refractoriness 
Under Load (RUL) tests

RUL specimen and 
according FEM model
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High-Alumina Refractory model material

Model material: High-alumina 
refractory castable

Selected for its resemblance to    
typical refractories materials

Remains stable at high 
temperatures                 (no phase 
transformation )

Open Porosity ≈ 17 %

Total Porosity ≈ 22 %

The expected Young's modulus of 
the material is around 
100 - 150 GPa

Standardized sample geometry
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Instron 3-Point Bending Test

Exemplary measurement with Instron

Displacement measurements are too high    
mainly due to test frame flexibility

E-Modul = 17 GPa
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3-Point Bending Test – Apparent displacement of Instron

The apparent displacement of the test frame is 
determined

Area moment of 
inertia for the 

calibration rod is 1000x
that of the standard test 

bar.
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3-Point Bending Test – Apparent displacement correction

 We can now subtract the 
apparent displacement from the 
measured displacement

 The E-Modul is calculated 
within a defined load range

 Uncorrected E-Modul: 17 GPa
 Corrected E-Modul: 132 GPa
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3-Point bending test – Digital Image correlation

 ARAMIS 12M adjustale by Zeiss

 Ignoring typical spring-back and 
settling effects in the experimental 
setup. 

 Direct measurement of local 
strains on the sample surface

 Stochastic pattern enables complete 
area analysis.
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Reference Sample: Aluminum subjected to Load Range from 15N to 10,000N

Surface analysis:

Shows strain in the X-direction [%]

 Positive values signify tensile stress.
 Negative values signify compressive 

stress.

Bending Line:

Shows displacement in the Y-Direction
[mm]

 Neutral fiber is in the sample's middle
 Load is applied at a rate of 0.15 MPa/s 

 [DIN 993-6]
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High-Alumina Refractory Sample: Load Applied Until Failure at 1858N

 The refractory sample exhibits a 
smaller strain

 Data quality decreases

 Rotation around the Z-axis

 The calculation can no longer be 
performed in the coordinate 
software

 Export the bending line and 
conduct the analysis in Python
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Bending line analysis in Python

 The respective 
force corresponds to 
the measurement 
value

 The E-Modul can be 
determined using the 
maximum 
deflection and the 
BestFit method.
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3-Point bending test – Digital Image correlation 
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Apparent displacement correction at high temperature

Apparent displacement [mm] 

E
-M

o
d

u
l [

G
p

a
]

B
e

n
d

in
g

 s
tr

e
ss

 [
M

p
a]

Temperatur [°C]



14

3-Point bending test – Digital Image correlation – high temperature

 The quality decreases with increasing temperature and yielding no usable results 

Air turbulence between hot and cold air (different refractive indices) resulted in poor 
measurements
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High-Temperature Dynamic E-Modulus Measurement via RFDA

Tests conducted with IMCE's HT1750 testing 
system, using the Sonelastic-RFDA software
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State of the Art

 RUL: static test method, used to determine 
pressure softening point

 Commonly used for refractories

 Cylindrical specimen with inner drilling 
loaded and heated

 Standardized load of 0.2 MPa (ISO 1893)

 Change in length measured directly on 
specimen

 Also used to measure thermal expansion 
using a neglectable load of 0.01 MPa 

RUL test schematic



17

Experimental Results – RUL Lightweight Brick

Increasing stress
Decreasing elongation
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Experimental Results – RUL Lightweight Brick

Young’s 
Modulus 

RUL 
[GPa]

Temperature 
[°C]

4.7200

4.3400

3.9600

3.0800

1.91000

200°C 400°C 600°C 800°C 1000°C
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Experimental Results - RFDA

 RFDA measurement as comparison

 Edynamic (RFDA) constant, increase at 1000 °C
 High porosity of ASTM 34 may lead so sintering

 Edynamic several GPa higher, than Estatic (RUL)

 Deviation between static and dynamic Young‘s 
modulus in a plausible range

Young’s 
Modulus 

RFDA 
[GPa]

Young’s 
Modulus 

RUL 
[GPa]

Temperature 
[°C]

11.84.7200

11.44.3400

11.63.9600

11.63.0800

12.51.91000
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Experimental Results – RUL Bauxite Brick
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Experimental Results – RUL Bauxite Brick
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Temperatur [°C] E-Modul DE [GPa] 
E-Modul DE  

korrigiert [GPa] 

200 4.0 20.1 

400 3.5 7.6 

600 2.7 1.8 

800 2.6 3.8 

1000 2.3 4.4 

1200 0.8 0.9 
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FEM Validation - Model

 Validation of determined Young‘s modulus 
using FEM model of RUL test

 Abaqus/CAE 2019

 2D axisymmetric model

 Approx. 500 Elements mesh

 Load of 1.3 MPa, since influence of E 
increases with stress

 Thermal expansion from RUL test with 
0.01 MPa (temp.-dependent)

 Simulation with temperature-dependent:
 Estatic (RUL)
 Edynamic (RFDA)



23

FEM Validation - Results
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Summary

 New method investigated:
Determination of Estatic (T), using RUL tests

 RUL tests carried out at several stresses on ASTM Brick 34 and Bauxite brick, 
determination of Estatic using isothermal lines

 Comparison with Edynamic from RFDA shows reasonable deviations

 FEM validation using model of RUL test shows good agreement for determined 
Estatic
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